Electroluminescent Lamp Drivers

EL Lamp Applications

- Thermostats
- Weight Scales
- Cellular Phones
- Digital Compasses
- HPCs (Handheld PCs)

Pocket Organizer

Pen Computer

- Temperature Monitors
- Automotive Dashboards
- GPS Handheld Receivers
- PDAs (Personal Digital Assistants)
- Watches and Alarm Clocks
- Test and Medical Equipment
- TV/VCR/Audio/Cable Box Remote Controllers

IMP, Inc. - Company Profile

IMP, Inc. designs, manufacturers and markets standard-setting analog integrated circuits and specialty analog wafer foundry processes for data communications interface and power management applications in computer, communications and control systems. IMP products are sold through a worldwide network of sales representatives and distributors.

Company Facilities

IMP headquarters and ISO 9001 certified wafer fabrication and test facility are located in San Jose, California. Product development centers are in Pleasanton, California, and Lee, New Hampshire. Sales offices are in San Jose, California; Dallas, Texas; West Kingston, Rhode Island and Singapore.

Principal Markets

Data Communications Interface - Internal system data communications circuits, including single-ended (SE), low voltage differential (LVD) and multimode (SE/LVD) Small Computer Systems Interface (SCSI) terminators.

Power Management - Circuits that generate, distribute, protect and manage the thermal and power consumption characteristics of hand-held, portable and battery-powered systems. Portable computers, mobile and wireless communication devices and battery-powered medical systems are typical market segments. Example products include electroluminescent lamp drivers, microprocessor supervisors, voltage monitors, low dropout voltage regulators, and high-frequency switching converters.

Wafer Fabrication and Manufacturing Services

High-volume, analog and mixed-signal wafer foundry services on low-power, high-voltage (100 V and above), CMOS, BiCMOS, and EEPROM processes, including turnkey packaging and test capabilities. Fabrication services include database production using IMP standard processes, and porting of customerowned technology.

For More Information

Visit the IMP web site at www.impweb.com; email info@impinc.com or contact IMP headquarters at 408.432.9100/800-438-3722.

Table of Contents

EL Driver Product Line Summary iv
EL Lamp Driver Development Kits vi
Data Sheets
IMP525 1
IMP527 7
IMP528 13
IMP560 17
IMP803 23
Die Specifications
IMP525-Die Specifications 31
IMP527-Die Specifications 32
IMP528 - Die Specifications 33
IMP560 - Die Specifications 34
IMP803 - Die Specifications 35
Application Notes
AN1 - IMP803 Evaluation Board 37
AN4 - EL Driver Demonstration Boards 45
Package Information 47
Tape and Reel Specifications 48
IMP Sales Offices, Representatives and Distributors 51
Map to IMP - San Jose, CA, USA 56
Quality at IMP - Our Policy 57
Power Management Products 59
μ P Supervisor Products 59-60
USB Power Switches 60
Sample Request Form Last Page EL Driver Product Line Summary

IMP Electroluminescent Lamp Drivers

IMP electroluminescent lamp drivers incorporate four EL lamp driving functions on-chip. These are the boost switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. Few external components are needed: one inductor, one diode, one capacitor and two resistors. The resistors allow independent adjustment of boost converter frequency and EL lamp drive frequency. Adjustable lamp drive frequency allows control over lamp color and power dissipation. All devices can be disabled for power saving.

All devices are available in chip form and small MicroSO and SO packages. Tape and reel shipment is available without additional cost.

IMP525: Single Cell Battery Powered Electroluminescent Lamp Driver/ Inverter

The IMP525 Electroluminescent (EL) lamp driver is designed for systems that must operate down to 1 V and below. The input supply voltage range is 0.9 V to 2.5 V . Typical output lamp drive voltage is 112 V peak-to-peak. EL lamps of up to 6 nF capacitance can be driven to high brightness.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to $1 \mu \mathrm{~A}$ typical with a V_{DD} of 1.5 V . Connecting R_{SW}, the oscillator frequency setting resistor, to ground, can disable the chip. A disable pad, accessible only on the die, can also be used to disable the driver (active low). An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 112 V peak-to-peak. This conserves power and extends battery life.

Key Features

- Wide operating voltage range - from 0.9 V to 2.5 V
- Simple design requires few passive components
- 112V peak-to-peak typical AC output voltage
- Adjustable output frequency controls lamp color and power consumption
- Adjustable converter frequency minimizes circuit power consumption
- Disable mode extends battery life
- Disable current $1 \mu \mathrm{~A}$ typical
- Compact MicroSO package and die option
- Same pinout as IMP803 EL Driver Product Line Summary

IMP560: Power Efficient EL Lamp Driver

The IMP560 is designed for systems with modest EL lamp drive voltage requirements. It is ideal for low ambient light applications or where small lamps are used. With just one-half the inductor current of the IMP803, the IMP560 reduces system power consumption and extends battery life. Input supply voltage range is 2.0 V to 6.5 V and quiescent current is a low $420 \mu \mathrm{~A}$. Typical EL lamp drive voltage is 120 V peak-to-peak.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 120 V peak-to-peak. This conserves power and extends battery life.
A disable mode puts the chip into a low current drain mode. With a 3.0 V supply, quiescent current drops to 200 nA maximum, 50 nA typical.

Key Features

- 120V peak-to-peak typical AC output voltage
- Low input current (w/ inductor current)...... 12 mA
- Low disabled input current..... 50 nA
- Wide operating voltage range - from 2.0 V to 6.5 V
- Simple design requires few passive components
- Adjustable output lamp frequency controls lamp color and power consumption
- Adjustable converter frequency for minimum power consumption
- IMP803 pin compatible
- MicroSO package option

IMP803: High-Voltage EL Lamp Driver

The IMP803 drives EL lamps of up to 30 nF capacitance to high brightness. EL lamps with capacitance greater than 30 nF can be driven but will be less bright. The typical regulated output voltage that is applied to the EL lamp is 180 V peak-to-peak.
The IMP803 operates over a 2.0 V to 6.5 V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP803. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications. An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 180 V peak-to-peak. This conserves power and extends battery life.

Key Features

- Low Power: $420 \mu \mathrm{~A}$ typical $\mathrm{V}_{\text {DD }}$ current
- Wide operating voltage range - from 2.0 V to 6.5 V
- 180V peak-to-peak typical AC output voltage
- Large output load capability - drive lamps with more than 30nF capacitance
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- Device can be Enabled/ Disabled
- Low quiescent current - 20nA (disabled)
- High-Voltage CMOS Process
- MicroSO package option

EL Lamp Driver Product Summary Table

Part	Input Voltage Range (V)	Packages	Low Power Disable Mode	Typical Output Voltage (VP)	Adjustable Lamp Drive and Boost Frequency	Regulated Output Voltage
IMP525	0.9 to 2.5	MicroSO \& SO	Yes	112	Yes	Yes
IMP527	0.9 to 2.5	MicroSO \& SO	Yes	180	Yes	Yes
IMP528	2 to 6.5	MicroSO \& SO	Yes	220	Yes	Yes
IMP560	2 to 6.5	MicroSO \& SO	Yes	120	Yes	Yes
IMP803	2 to 6.5	MicroSO \& SO	Yes	180	Yes	Yes

[^0]ELD/B_t06

EL Driver Product Line Summary

EL Lamp Driver Development Kits

Several demonstration boards and evaluation kits are available to reduce time-to-market. The kits are available by calling IMP Customer Service at 408.432.9100.

Item	Device/Package	Description
IMP803EV1	IMP803LG	Evaluation board. Has all components plus battery and lamp.
IMPxxxDBM	Any MicroSO	Development board. For evaluating IC sample(s) in-circuit.
IMPxxxDBS	Any SO	Development board. For evaluating IC sample(s) in-circuit.
IMPELD003	Any SO	Evaluation board with pin jacks for part changes. No R, C, L or battery.

Note: "xxx" denotes any driver; 525, 527,528, 560 or 803.
ELD/B_105

Electroluminescent Lamp Applications and Benefits

Liquid Crystal Displays (LCDs) must be lighted for viewing in darkness or low ambient light conditions. Typically, light is projected forward from the back of the LCD display. EL lamps are popular backlights for liquid crystal displays and keypads because EL lamps are flexible, lightweight, thin, vibration and impact resistant, and can be shaped into small, complex or irregular forms. EL lamps evenly light an area without creating "bright-spots".

Since EL lamps typically consume much less current than incandescent bulbs or light emitting diodes (LEDs), their low power consumption, low heat generation and flexibility make them ideal for battery powered portable applications.

EL lamp backlighting applications include: keyless entry systems; audio/video equipment remote controllers; PDA keyboards and displays; timepieces and watches; LCD displays in cellular phones, pagers, and handheld Global Positioning Systems (GPS); face illumination for instrumentation; assistance lighting for buildings; and decorative lighting for sign-displays and merchandising displays.

Typical EL Lamp Applications

- PDAs
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Toys
- Automotive displays
- Cellular phones
- Night lights
- Audio and TV remote control units
- Panel meters
- Pagers

EL Driver Product Updates

New product information and application notes can be obtained by visiting the IMP web site at www.impweb.com or by sending email to info@impinc.com.

Single Cell Battery Powered Electroluminescent Lamp Driver/Inverter

The IMP525 is an Electroluminescent (EL) lamp driver designed for systems that must operate down to 1 volt and below. The input supply voltage range is 0.9 V to 2.5 V . Typical output lamp drive voltage is 112 V . All four EL lamp-driving functions are on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6 nF capacitance can be driven to high brightness.

The circuit requires few external components; one inductor, one diode, one capacitor and two resistors. The resistors set the frequency for the two oscillators.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to $1 \mu \mathrm{~A}$ typical with a V_{DD} of 1.5 V . The chip can be disabled by connecting R_{SW}, the oscillator frequency setting resistor, to ground. A disable pad (active low), accessible only on the die, can also be used to disable the driver.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 112 V peak-to-peak. This conserves power and extends battery life.

The IMP525 is available in MicroSO and SO-8 packages and in die form.

Key Features

- Wide operating voltage range - from 0.9 V to 2.5 V
- Simple design requires few passive components
- 112V peak-to-peak typical AC output voltage
- Adjustable output frequency controls lamp color and power consumption
- Adjustable converter frequency minimizes circuit power consumption
- Disable mode extends battery life
- Disable current $1 \mu \mathrm{~A}$ typical
- Compact MicroSO package option

Applications

- Audio/ TV remote control units
- Pagers/ Cellular phones
- PDAs
- Clocks and radios
- Portable GPS receivers
- LCD modules
- Toys

Block Diagram

Pin Configuration

SO/MicroSO

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP525EMA	0.9 V to 2.5 V	YES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -MicroSO
IMP525ESA	0.9 V to 2.5 V	YES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -SO
IMP525/D	0.9 V to 2.5 V	YES	$25^{\circ} \mathrm{C}$	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {RSw-OSC }}$ and $\mathrm{V}_{\text {REL-OSC }} \ldots-0.5 \mathrm{~V}$ to +3.5 V

Power Dissipation (SO package) 400mW
Power Dissipation (MicroSO package) 300mW

Note: All voltages are referenced to GND.
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{SW}}=1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{EL}}=1.0 \mathrm{M} \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
ON-resistance of MOS Switch	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	$\mathrm{I}=50 \mathrm{~mA}$			15	Ω
Operating Voltage			0.9		2.5	V
Output Voltage at C_{S}	$\mathrm{V}_{\text {CS }}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, See Figure 1, Table 1	52	58	65	V
Output Voltage at C_{S}	$V_{\text {CS }}$	$\mathrm{V}_{\mathrm{DD}}=0.9 \mathrm{~V}$, See Figure 1, Table 2		50		V
Output Voltage Peak-to-Peak	$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, See Figure 1	104	112	124	$V_{\text {P-P }}$
Quiescent $V_{D D}$ Supply Current, Disabled (Disable pin available on die only)	$\mathrm{I}_{\text {QDIS }}$	Disable $=$ HIGH		70		nA
Quiescent V ${ }_{\text {DD }}$ Supply Current, Disabled	$\mathrm{I}_{\text {QDIS }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{SW}-\mathrm{OSC}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V} \end{aligned}$		1.0	2.0	$\mu \mathrm{A}$
Input Current at V_{DD} Pin	I_{DD}	$\mathrm{V}_{\mathrm{DD}}=0.9 \mathrm{~V}$ to 1.5 V			1.5	mA
Input Current: IDD ${ }_{\text {Plus }}$ Inductor Current	1 IN	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$		23	32	mA
$\mathrm{V}_{\mathrm{A}-\mathrm{B}}$ Output Drive Frequency	f_{EL}	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, See Figure 1, Table 1		500		Hz
Boost Converter Switching Frequency	$\mathrm{f}_{\text {Sw }}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, See Figure 1, Table 1		26		kHz
Switching Duty Cycle	$\mathrm{D}_{\text {SW }}$	$V_{D D}=1.5 \mathrm{~V}$, See Figure 1		87.5		\%
Disable Input LOW Voltage (Disable pin available on die only)	$V_{\text {DISL }}$		GND		0.2	V
Disable Input HIGH Voltage (Disable pin available on die only)	$\mathrm{V}_{\text {DISH }}$		$\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		$V_{D D}$	V

IMP525

Typical Characteristics

Boost Converter Switching Period

Pin Descriptions

Pin Number	Name	Function
1	$V_{D D}$	Positive voltage supply for the IMP525. Inductor L may be connected here or to a separate supply.
2	$\mathrm{R}_{\text {SW-OSC }}$	Switch-mode resistor pin. Switching frequency is determined by external resistor R_{SW}, connected between pin 2 and V_{DD}.
3	Cs	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C_{s}.
4	Lx	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V_{B}	EL lamp drive. The lamp is connected to a high-voltage bridge circuit with V_{B} providing the complementary connection to V_{A}.
7	$V_{\text {A }}$	EL lamp drive. (See above)
8	$\mathrm{R}_{\text {EL-OSC }}$	The EL lamp oscillator frequency-setting pin. The frequency is controlled by resistor R_{EL}, connected from pin 8 to $V_{D D}$.
Disable Pad	DIS	Available only in die form. Setting DIS HIGH disables the chip.

External Components

External Component	Description and Selection Guide
Diode	A fast reverse recovery diode, with BV >100, such as a 1 N4148.
Capacitor C_{s}	The high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10 nF and 100 nF is recommended.
Resistor R_{EL}	The EL lamp oscillator frequency-setting resistor. R_{EL} is connected between pin 8 and V_{DD}, providing a frequency inversely proportional to R_{EL}; as R_{EL} increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A $1 \mathrm{M} \Omega$ resistor between the $\mathrm{R}_{\mathrm{EL} \text {-osc }}$ pin and the V_{DD} supply results in a lamp frequency around 500 Hz .
Resistor Rsw	Switching Oscillator frequency-setting resistor. $R_{\text {Sw }}$ is connected between the $R_{\text {Sw-osc }}$ pin and the $V_{D D}$ supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Capacitor $\mathrm{C}_{\text {sw }}$	This is an optional noise-suppression capacitor connected from ground to the Rsw-osc pin. A 100 pF capacitor is recommended.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_{x} pin. When the switch opens, the inductor potential will forward-bias the diode and the current will pass through to the storage capacitor C_{s}, charging it to a high voltage. As the value of the inductor is increased, the switching frequency set by R_{SW} should also be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger-area EL lamps must be driven. A small electrolytic capacitor ($10 \mu \mathrm{~F}, 16 \mathrm{~V}$), normally present across the inductor supply $\mathrm{V}_{\mathbb{N}}$, will likely eliminate the need for $\mathrm{C}_{s w}$.

Application Information

Test Circuit

Figure 1 shows the IMP525 configured to drive an EL lamp,
represented as a 3 nF capacitor.

Figure 1. Test Circuit

Table 1. $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$

Component	Connections	Value	Description
R_{SW}	$\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{SW} \text {-OSC }}$	$1 \mathrm{M} \Omega$	Boost converter oscillator bias resistor
R_{EL}	$\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{EL}-\mathrm{OSC}}$	$1 \mathrm{M} \Omega$	EL lamp driver oscillator bias resistor
L	$\mathrm{V}_{\mathrm{DD}}, \mathrm{Lx}^{2}$	$330 \mu \mathrm{H}^{2}$	Boost converter inductor
C_{S}	$\mathrm{C}_{\mathrm{S}}, \mathrm{GND}$	$0.1 \mu \mathrm{~F} / 100 \mathrm{~V}$	Boost converter storage capacitor
D	$\mathrm{L}_{\mathrm{x}}, \mathrm{C}_{\mathrm{S}}$	1 N 4148	Switching diode
C_{SW}	$\mathrm{R}_{\mathrm{SW}-\mathrm{OSC}}, \mathrm{GND}$	0.1 nF	Noise-suppression capacitor

Notes. 2. Murata LQH4N331K04 (8.2 2 max. DCR)

Table 2. $\mathrm{V}_{\mathrm{IN}}=0.9 \mathrm{~V}$

Component	Connections	Value	Description
$R_{S W}$	$\mathrm{~V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{SW}-\mathrm{OSC}}$	$1.0 \mathrm{M} \Omega$	Boost converter oscillator bias resistor
R_{EL}	$\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{EL}-\mathrm{OSC}}$	$2.62 \mathrm{M} \Omega$	EL lamp driver oscillator bias resistor
L	$\mathrm{V}_{\mathrm{DD}}, \mathrm{L}^{3}$	$680 \mu \mathrm{H}^{3}$	Boost converter inductor
C_{S}	$\mathrm{C}_{\mathrm{S}}, G N D$	$0.1 \mu \mathrm{~F} / 100 \mathrm{~V}$	Boost converter storage capacitor
D	$\mathrm{L}_{\mathrm{x}}, \mathrm{C}_{\mathrm{S}}$	1 N 4148	Switching diode
$\mathrm{C}_{S W}$	$\mathrm{R}_{\mathrm{SW}-\mathrm{OSC}}, G N D$	0.1 nF	Noise-suppression capacitor

Notes. 3. Coilcraft DS1608C-684 (2.2 Ω max. DCR)

Enable/ Disable Operation

Figure 2 shows how the IMP525 can be enabled via a logic gate that connects R_{SW} to V_{DD}, and disabled by connecting it to ground.

The IMP525 can also be disabled using a pad on the die. The Disable function pin is not available in packaged parts.

Enable/Disable Table	
$\mathbf{R}_{\text {SW }}$ Connection	IMP525 State
V_{DD}	Enabled
Ground	Disabled

Disable PAD Connection (Available only with dice)	IMP525 State
HIGH $\left(\mathrm{V}_{\mathrm{DD}}\right)$	Disabled
LOW (Ground)	Enabled

cmos

* Optional

Figure 2. Enable/Disable Operation

High Voltages Present

The IMP525 generates high voltages and caution should be exercised.

Inductor Manufacturers

Manufacturer	Series	USA Phone Number
Toko	D52FU	(847) 297-0070
Coilcraft	DS1608, DO1608, DT1608	(847) 639-6400
River Electronics	FLC32	(310) 320-7488
Murata	LQH4N	(800) 831-9172

Single Cell Battery Powered Electroluminescent Lamp Driver/Inverter

The IMP527 is an Electroluminescent (EL) lamp driver designed for systems that must operate down to 1 volt and below. The input supply voltage range is 0.9 V to 2.5 V . Typical output lamp drive voltage is 180 V . All four EL lamp-driving functions are on-chip. These are the switchmode power supply, its high-frequency oscillator, the high-voltage H -bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6 nF capacitance can be driven to high brightness.
The circuit requires few external components; one inductor, one diode, one capacitor and two resistors. The resistors set the frequency for the two oscillators.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to $1 \mu \mathrm{~A}$ typical with a V_{DD} of 1.5 V . The chip can be disabled by connecting $R_{S W}$, the oscillator frequency setting resistor, to ground. A disable pad (active low), accessible only on the die, can also be used to disable the driver.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 180 V peak-to-peak. This conserves power and extends battery life.
The IMP527 is available in MicroSO and SO-8 packages and in die form.
Block Diagram

Key Features

- Wide operating voltage range - from 0.9 V to 2.5 V
- Simple design requires few passive components
- 180V peak-to-peak typical AC output voltage
- Adjustable output frequency controls lamp color and power consumption
- Adjustable converter frequency minimizes circuit power consumption
- Disable mode extends battery life
- Disable current 1 1 A typical
- Compact MicroSO package option

Applications

- Audio/ TV remote control units
- Pagers/ Cellular phones
- PDAs
- Clocks and radios
- Portable GPS receivers
- LCD modules
- Toys

Pin Configuration

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP527EMA	0.9 V to 2.5 V	YES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{MicroSO}$
IMP527ESA	0.9 V to 2.5 V	YES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{SO}$
IMP527/D	0.9 V to 2.5 V	YES	$25^{\circ} \mathrm{C}$	Dice

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {RSw-OSC }}$ and $\mathrm{V}_{\text {REL-OSC }} \ldots-0.5 \mathrm{~V}$ to +3.5 V
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (SO package) 400 mW
Power Dissipation (MicroSO package) \qquad 300 mW

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{SW}}=1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{EL}}=1 \mathrm{M} \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
ON-resistance of MOS Switch	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	$\mathrm{I}=50 \mathrm{~mA}$			15	Ω
Operating Voltage			0.9		2.5	V
Output Voltage at C_{S}	$\mathrm{V}_{\text {CS }}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, See Figure 1, Table 1	80	90		V
Output Voltage at C_{S}	$\mathrm{V}_{\text {CS }}$	$V_{D D}=0.9 \mathrm{~V}$, See Figure 1, Table 2		50		V
Output Voltage Peak-to-Peak	$V_{A}-V_{B}$	$V_{D D}=1.5 \mathrm{~V}$, See Figure 1		180		$\mathrm{V}_{\text {P-P }}$
Quiescent V_{DD} Supply Current, Disabled (Disable pin available on die only)	$\mathrm{I}_{\text {QDIS }}$	Disable $=\mathrm{HIGH}$		70		nA
Quiescent V ${ }_{\text {DD }}$ Supply Current, Disabled	$\mathrm{I}_{\text {QDIS }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{SW}-\mathrm{OSC}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V} \end{aligned}$		1.0	2.0	$\mu \mathrm{A}$
Input Current at $\mathrm{V}_{\text {DD }}$ Pin	I_{DD}	$\mathrm{V}_{\mathrm{DD}}=0.9 \mathrm{~V}$ to 1.5 V			1.5	mA
Input Current: IDD ${ }_{\text {Plus }}$ Inductor Current	1 IN	$V_{D D}=1.5 \mathrm{~V}$, See Figure 1, Table 1		26	32	mA
$\mathrm{V}_{\text {A-B }}$ Output Drive Frequency	f_{EL}	$V_{D D}=1.5 \mathrm{~V}$, See Figure 1, Table 1		500		Hz
Boost Converter Switching Frequency	$\mathrm{f}_{\text {Sw }}$	$V_{D D}=1.5 \mathrm{~V}$, See Figure 1, Table 1		26		kHz
Switching Duty Cycle	$\mathrm{D}_{\text {SW }}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, See Figure 1		87.5		\%
Disable Input LOW Voltage (Disable pin available on die only)	$\mathrm{V}_{\text {DISL }}$		GND		0.2	V
Disable Input HIGH Voltage (Disable pin available on die only)	$\mathrm{V}_{\text {DISH }}$		$\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		$V_{D D}$	V

Typical Characteristics

EL Lamp Drive Frequency

EL Lamp Drive Period

Boost Converter Switching Frequency

Boost Converter Switching Period

Pin Descriptions

Pin Number	Name	Function
1	$V_{D D}$	Positive voltage supply for the IMP527. Inductor L may be connected here or to a separate supply.
2	Rsw-osc	Switch-mode resistor pin. Switching frequency is determined by external resistor R_{sw}, connected between pin 2 and V_{DD}.
3	Cs	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C_{s}.
4	Lx	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V_{B}	EL lamp drive. The lamp is connected to a high-voltage bridge circuit with V_{B} providing the complementary connection to V_{A}.
7	$V_{\text {A }}$	EL lamp drive. (See above)
8	$\mathrm{R}_{\text {EL-osc }}$	The EL lamp oscillator frequency-setting pin. The frequency is controlled by resistor R_{EL}, connected from pin 8 to $V_{D D}$.
Disable Pad	DIS	Available only in die form. Setting DIS HIGH disables the chip.

External Components

External Component	Description and Selection Guide
Diode	A fast reverse recovery diode, with BV > 100, such as a 1 N4148.
Capacitor Cs	The high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10 nF and 100 nF is recommended.
Resistor R_{EL}	The EL lamp oscillator frequency-setting resistor. R_{EL} is connected between pin 8 and V_{DD}, providing a frequency inversely proportional to R_{EL}; as R_{EL} increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A $1 \mathrm{M} \Omega$ resistor between the $\mathrm{R}_{\mathrm{EL} \text {-osc }}$ pin and the V_{DD} supply results in a lamp frequency around 500 Hz .
Resistor Rsw	Switching Oscillator frequency-setting resistor. $R_{\text {sw }}$ is connected between the $R_{\text {Sw-osc }}$ pin and the $V_{D D}$ supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Capacitor $\mathrm{C}_{\text {sw }}$	This is an optional noise-suppression capacitor connected from ground to the $\mathrm{R}_{\text {sw-osc }}$ pin. A 100 pF capacitor is recommended.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_{x} pin. When the switch opens, the inductor potential will forward-bias the diode and the current will pass through to the storage capacitor C_{s}, charging it to a high voltage. As the value of the inductor is increased, the switching frequency set by $R_{S w}$ should also be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger-area EL lamps must be driven. A small electrolytic capacitor ($10 \mu \mathrm{~F}, 16 \mathrm{~V}$), normally present across the inductor supply $\mathrm{V}_{\mathbb{N}}$, will likely eliminate the need for $\mathrm{C}_{S W}$.

Application Information

Test Circuit

Figure 1 shows the IMP527 configured to drive an EL lamp, represented as a 3 nF capacitor.

Figure 1. Test Circuit
Table 1. $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$

Component	Connections	Value	Description
$\mathrm{R}_{\text {SW }}$	$\mathrm{V}_{\text {DD }}, \mathrm{R}_{\text {SW-OSC }}$	$1 \mathrm{M} \Omega$	Boost converter oscillator bias resistor
R_{EL}	$\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{EL}-\mathrm{OSC}}$	$1 \mathrm{M} \Omega$	EL lamp driver oscillator bias resistor
L	$\mathrm{V}_{\mathrm{DD}}, L_{\text {c }}{ }^{2}$	$330 \mu \mathrm{H}^{2}$	Boost converter inductor
Cs	C_{s}, GND	$0.1 \mu \mathrm{~F} / 100 \mathrm{~V}$	Boost converter storage capacitor
D	Lx, Cs	1N4148	Switching diode
$\mathrm{C}_{\text {SW }}$	$\mathrm{R}_{\text {SW-osc }}$, GND	0.1 nF	Noise-suppression capacitor (optional)

Notes. 2. Murata LQH4N331K04 (8.2 2 max. DCR)

Table 2. $\mathrm{V}_{\mathrm{IN}}=0.9 \mathrm{~V}$

Component	Connections	Value	Description
$\mathrm{R}_{\text {Sw }}$	$\mathrm{V}_{\text {DD }}, \mathrm{R}_{\text {SW-OSc }}$	$1 \mathrm{M} \Omega$	Boost converter oscillator bias resistor
$\mathrm{R}_{\text {EL }}$	$\mathrm{V}_{\text {DD }}, \mathrm{R}_{\text {EL-OSC }}$	$2.62 \mathrm{M} \Omega$	EL lamp driver oscillator bias resistor
L	$V_{\text {DD }}, L_{\text {x }}{ }^{3}$	$680 \mu \mathrm{H}^{3}$	Boost converter inductor
Cs	C_{s}, GND	$0.1 \mu \mathrm{~F} / 100 \mathrm{~V}$	Boost converter storage capacitor
D	$\mathrm{L}_{\mathrm{x}}, \mathrm{C}_{\text {S }}$	1N4148	Switching diode
$\mathrm{C}_{\text {sw }}$	$\mathrm{R}_{\text {Sw-osc }}$, GND	0.1 nF	Noise-suppression capacitor (optional)

Notes. 3. Coilcraft DS1608C-684 (2.2ת max. DCR)

Enable/ Disable Operation

Figure 2 shows how the IMP527 can be enabled via a logic gate that connects R_{SW} to V_{DD}, and disabled by connecting it to ground.

The IMP527 can also be disabled using a pad on the die. The Disable function pin is not available in packaged parts.

Enable/Disable Table	
R $_{\text {SW }}$ Connection	IMP527 State
$\mathrm{V}_{\text {DD }}$	Enabled
Ground	Disabled

Disable PAD Connection (Available only with dice)	IMP527 State
HIGH (VD)	Disabled
LOW (Ground)	Enabled

* Optional

Figure 2. Enable/Disable Operation

High Voltages Present

The IMP527 generates high voltages and caution should be exercised.

Inductor Manufacturers

Manufacturer	Series	USA Phone Number
Toko	D52FU	(847) 297-0070
Coilcraft	DS1608, DO1608, DT1608	(847) 639-6400
River Electronics	FLC32	(310) 320-7488
Murata	LQH4N	(800) 831-9172

ISO 9001 Registered

Block Diagram

Power Management

High-Voltage EL Lamp Driver

- 220 V $_{\text {PP }}$ Drive

The IMP528 is an Electroluminescent (EL) lamp driver with the four EL lamp driving functions on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. The IMP528 drives EL lamps of up to 50nF capacitance to high brightness; EL lamps with capacitances greater than 50 nF can be driven, but will be lower in light output. The typical regulated output voltage that is applied to the EL lamp is 220 V peak-topeak. The circuit requires few external components; a single inductor, single diode, two capacitors and three resistors. Two of these resistors set the frequency for two internal oscillators.

Unlike other EL lamp drivers, the IMP528 does not require an external protection resistor in series with the EL lamp.

The IMP528 operates over a 2.0 V to 6.5 V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP528. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications.
An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 220 V peak-to-peak. This conserves power and extends battery life.

The IMP528 is available in MicroSO and SO-8 packages and in die or wafer form. the

Key Features

220V peak-to-peak typical AC output voltage

- Low Power: $420 \mu \mathrm{~A}$ typical V_{DD} current
- Wide operating voltage range-from 2.0 V to 6.5 V
- Large output load capability - drives lamps with more than 50 nF capacitance
- Eliminates external protection resistor in series with EL lamp
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- High-Voltage CMOS Process
- MicroSO package option

Applications

- GPS units/ Pagers/ Cellular phones
- PDAs/ Handheld computers
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Toys

Pin Configuration

SO/ MicroSO

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP528ESA	2.0 V to 6.5 V	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{SO}$
IMP528EMA	2.0 V to 6.5 V	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{MicroSO}$
IMP528/D	2.0 V to 6.5 V	Yes	$25^{\circ} \mathrm{C}$	Dice
IMP528/D1	2.0 V to 6.5 V	Yes	$25^{\circ} \mathrm{C}$	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

$\mathrm{V}_{\text {DD }}$	-0.5 V to +7.0 V
$\mathrm{V}_{\text {RSW-OSC }}$ and $\mathrm{V}_{\text {ReL-OSC }}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CS}}, \mathrm{L}_{\mathrm{X}}$	-0.5 V to +120 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (SO)	400 mW
Power Dissipation (MicroSO)	300 mW
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$	-0.5 V to $\mathrm{V}_{\mathrm{CS}}(\mathrm{pin} 3)$

$V_{D D}$. -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
V_{CS}, L_{X}
-0.5 V to +120 V
Operating Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (SO)
400 mW
V_{A}, V_{B}
-0.5 V to $\mathrm{V}_{\mathrm{CS}}(\operatorname{pin} 3)$

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{SW}}=910 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{EL}}=2.7 \mathrm{M} \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
ON-resistance of MOS Switch	R ${ }_{\text {DS(ON) }}$	$\mathrm{I}=100 \mathrm{~mA}$		3.0	8	Ω
Output Voltage Regulation	$\mathrm{V}_{\text {cs }}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.5 V		110		V
Output Voltage Peak-to-peak (in regulation)	$V_{A}-V_{B}$	$V_{D D}=2.0$ to 6.5 V		220		V
Input Current at $\mathrm{V}_{D D}$ Pin	I_{DD}	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1		420	700	$\mu \mathrm{A}$
Input Current at $\mathrm{V}_{D D}$ Pin	IDD	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		500	750	$\mu \mathrm{A}$
Quiescent V_{DD} Supply Current, Disabled	$I_{\text {DD }}$	$V_{\text {RSW }- \text { osc }}<100 \mathrm{mV}$		20	200	nA
Input Current: I IDD Plus Inductor Current	I_{N}	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1		21	31	mA
Output Voltage at $\mathrm{V}_{\text {CS }}$	V_{cs}	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1		110		V
$\mathrm{V}_{\text {A-B }}$ Output Drive Frequency	$\mathrm{f}_{\text {EL }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1		250		Hz
Switching Frequency	$\mathrm{f}_{\text {Sw }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1		61		kHz
Switching Duty Cycle	$\mathrm{D}_{\text {sw }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1		88		\%

Pin Descriptions

Pin Number	Name	Function
1	V_{DD}	Positive voltage supply for the IMP528. Inductor L may be connected here or to a separate unregulated supply.
2	$\mathrm{R}_{\text {SW-OSC }}$	Switch-mode resistor pin. Switching frequency is determined by an external resistor, R_{Sw}.
3	C_{S}	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C_{s}.
4	L_{x}	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V_{B}	EL lamp drive. The lamp is connected in a high-voltage bridge circuit with V_{B} providing the complementary connection to V_{A}. The peak-to-peak AC voltage across the EL lamp is thus two times $\mathrm{V}_{\text {cs }}$.
7	V_{A}	EL lamp drive. (See above)
8	$\mathrm{R}_{\text {EL-OSC }}$	The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor REL.

External Components

External Component	Description and Selection Guide
Diode	Catch diode. A fast reverse recovery diode, with BV > 150V, such as an FDLL400 (150V).
Capacitor $\mathrm{C}_{\text {s }}$	This is the high voltage capacitor that stores the inductive energy transferred through the catch diode. A capacitor with WV $>120 \mathrm{~V}$ between 10 nF and 100 nF is recommended.
Resistor REL	The EL lamp oscillator frequency setting resistor. This resistor, connected between the $R_{E L-O S C}$ pin and $V_{D D}$, provides an oscillator frequency inversely proportional to $R_{E L}$; as $R_{E L}$ increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A $2.7 \mathrm{M} \Omega$ resistor between the $\mathrm{R}_{\mathrm{EL} \text {-osc }}$ pin and the $V_{D D}$ supply results in a lamp frequency around 250 Hz .
Resistor R ${ }_{\text {Sw }}$	Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the $R_{\text {Sw-OSC }}$ pin and the V_{DD} supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_{x} pin. When this internal switch opens, the inductor potential will forward-bias the catch diode and the current will pass through the storage capacitor C_{s}, charging it to a high voltage. Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by R_{SW} should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.

Application Information

Test and Application Circuit, 3.0V

Figure 1 shows the IMP528 configured to drive an EL lamp with a 3.0 V input.

Figure 1. 3.0V Application

Dual Supply Operation with 1.5 V Battery

The IMP528 can also be operate from a single battery cell when a regulated voltage higher than 2.0 V is also available. This dual supply configuration, shown in Figure 2, uses the regulated voltage to operate the IMP528 while the energy for the highvoltage boost circuit comes from the battery.

Figure 2. Dual Supply Operation

Switch Resistance

The IMP528 inductor switch resistance is typically below 3.5Ω, as shown in Figure 3.

High-Voltages Present

The IMP528 generates high voltages and caution should be exercised.

Figure 3. Boost Switch ON-Resistance

ISO 9001 Registered

Power Management

A disable mode puts the chip into a low current drain mode. With a 3.0V supply, quiescent current drops to 200 nA maximum, 50 nA typical. The chip is disabled by connecting the oscillator frequency setting resistor $\mathrm{R}_{\text {SW }}$ to ground.

The IMP560 is available in MicroSO and SO-8 packages and in die or wafer form.

Power Efficient EL Lamp Driver

The IMP560 is an Electroluminescent (EL) lamp driver designed for systems with low EL lamp drive voltage requirements. It is ideal for low tems with low EL lamp drive voltage requirements. It is ideal for low
ambient light applications or where small lamps are used. With just onehalf the inductor current of the IMP803, the IMP560 reduces system power consumption and extends battery life. Input supply voltage range is 2.0 V to 6.5 V and quiescent current is a low $420 \mu \mathrm{~A}$. Typical EL lamp drive voltage is $\pm 56 \mathrm{~V}$.

All four EL lamp-driving functions are on-chip. These are the switchmode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6 nF capacitance can be driven to high brightness.

The circuit requires few external components; a single inductor, a single diode, two capacitors and three resistors. Two of these resistors set the frequencies for two internal oscillators. An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 120 V peak-to-peak. This conserves power and extends battery life.
All four EL lamp-driving functions are on-chip. These are the switch-peak-to-peak. This conserves power and extends battery life.

Key Features

- 112V peak-to-peak typical AC output voltage
- Low input current (w/ inductor current)...... 12 mA
- Low disabled input current......50nA
- Wide operating voltage range - from 2.0 V to 6.5 V
- Simple design requires few passive components
- Adjustable output lamp frequency controls lamp color and power consumption
- Adjustable converter frequency for minimum power consumption
- IMP803 pin-compatible
- MicroSO package option

Applications

- N ight lights
- Automotive displays
- Cellular phones
- Pagers
- Clocks and radios
- Portable G PS receivers
- LCD module backlights

Block Diagram

Pin Configuration

Pin Compatible With IMP803

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP560EMA	2.0 V to 6.5 V	YES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{MicroSO}$
IMP560ESA	2.0 V to 6.5 V	YES	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{SO}$
IMP560/D	2.0 V to 6.5 V	YES	$25^{\circ} \mathrm{C}$	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {RSw-OSC }}$ and $\mathrm{V}_{\text {REL-OSC }}$	-0.5 V to +7.0 V
Output Voltage, V ${ }_{\text {CS }}$	-0.5 V to +120 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (SO)	400 mW
Power Dissipation (MicroSO)	300 mW

Note: All voltages are referenced to GND.
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{SW}}=750 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{EL}}=2.0 \mathrm{M} \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
ON-resistance of MOS Switch	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{I}=100 \mathrm{~mA}$		3.5	8	Ω
Output Voltage Regulation	$\mathrm{V}_{\text {CS }}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.5 V	52	56	65	V
Output Voltage Peak-to-peak (in regulation)	$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.5 V	104	112	120	V
Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current, Disabled	$\mathrm{I}_{\text {DDIS }}$	$\mathrm{V}_{\text {RSW-OSC }}<100 \mathrm{mV}$		50	200	nA
Input Current at $\mathrm{V}_{\text {DD }}$ Pin	I_{DD}	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1		470	700	$\mu \mathrm{A}$
Input Current at V_{DD} Pin	I_{DD}	$V_{D D}=5.0 \mathrm{~V}$, See Figure 2		500	750	$\mu \mathrm{A}$
Input Current: I_{DD} Plus Inductor Current	1 N	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1		12		mA
$\mathrm{V}_{\text {A-B }}$ Output Drive Frequency	f_{EL}	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1	300	370	430	Hz
Switching Frequency	$\mathrm{f}_{\text {Sw }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1	50	70	90	kHz
Switching Duty Cycle	$\mathrm{D}_{\text {SW }}$	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1		88		\%

Typical Characteristics

$l_{D D}$ vs. $V_{D D}$

Pin Descriptions

Pin Number	Name	Function
1	V_{DD}	Positive voltage supply for the IMP560. Inductor L may be connected here or to a separate unregulated supply.
2	$\mathrm{R}_{\text {Sw-osc }}$	Switch-mode resistor pin. Switching frequency is determined by an external resistor, $\mathrm{R}_{\text {Sw }}$.
3	$\mathrm{C}_{\text {S }}$	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C_{s}.
4	L_{x}	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V_{B}	EL lamp drive. The lamp is connected in a high-voltage bridge circuit with V_{B} providing the complementary connection to V_{A}. The peak-to-peak AC voltage across the EL lamp is thus two times V_{cs}.
7	$V_{\text {A }}$	EL lamp drive. (See above)
8	$\mathrm{R}_{\text {EL-OSC }}$	The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor R_{EL}.

External Components

External Component	Description and Selection Guide
Diode	A fast reverse recovery diode, with BV > 100, such as a 1 N4148.
Capacitor $\mathrm{C}_{\text {s }}$	This is the high voltage capacitor that stores the inductive energy transferred through the diode. A 100 volt capacitor between 10 nF and 100 nF is recommended.
Resistor R_{EL}	The EL lamp oscillator frequency setting resistor. This resistor, connected between the $R_{E L-O s C}$ pin and ground, provides an oscillator frequency inversely proportional to $R_{E L}$; as $R_{E L}$ increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A $2 \mathrm{M} \Omega$ resistor between the $\mathrm{R}_{\mathrm{EL} \text {-osc }}$ pin and the $V_{D D}$ supply results in a lamp frequency around 350 Hz : a $1 \mathrm{M} \Omega$ resistor will give $\approx 700 \mathrm{~Hz}$.
Resistor $\mathrm{R}_{\text {sw }}$	Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the $\mathrm{R}_{\mathrm{Sw} \text {-osc }}$ pin and the V_{DD} supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_{x} pin. When this internal switch opens, the inductor potential will forward-bias the diode and the current will pass through the storage capacitor C_{s}, charging it to a high voltage. Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by $R_{S W}$ should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.

High-Voltages Present

The IMP560 generates high voltages and caution should be exercised.

Application Information

Test and Application Circuit, 3.0V

Figure 1 shows the IMP560 configured to drive a 3-square-inch EL lamp, represented as a 10 nF capacitor.

Test and Application Circuit, 5.0V
Figure 2 shows a 5.0 V input application driving a 6 -square-inch EL lamp.

Figure 1. 3.0V Application

Figure 2. 5.0V Application

Enable/ Disable Operation

Figure 3 shows the IMP560 can be enabled via a logic gate that connects $R_{S W}$ to $V_{D D}$, and disabled by connecting it to ground. $R_{E L}$ may be connected either to V_{DD} or to the gate.

Enable/Disable Table	
$\mathbf{R}_{\text {SW }}$ Connection	IMP560 State
$V_{D D}$	Enabled
Ground	Disabled

Figure 3. Enable/Disable Operation

Dual Supply Operation with 1.5V Battery

The IMP560 can also be operate from a single battery cell when a regulated voltage higher than 2.0 V is also available. The dual supply configuration, shown in Figure 4, uses the regulated voltage to operate the IMP560 while the energy for the highvoltage boost circuit comes from the battery. The current to run the internal logic is typically $420 \mu \mathrm{~A}$.

The circuit of Figure 4 can also be used with batteries that exceed 6.0 V as long as V_{DD} does not exceed 6.5 V .

Figure 4. Dual Supply Operation with High Battery Voltages

High-Voltage EL Lamp Driver

The IMP803 is an Electroluminescent (EL) lamp driver with the four EL lamp driving functions on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. The IMP803 drives EL lamps of up to 30nF capacitance to high brightness; EL lamps with capacitances greater than 30 nF can be driven, but will be lower in light output. The typical regulated output voltage that is applied to the EL lamp is 180 V peak-topeak. The circuit requires few external components, a single inductor, single diode, two capacitors and three resistors. Two of these resistors set the frequency for two internal oscillators.

The IMP803 operates over a 2.0 V to 6.5 V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP803. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications.

An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 180 V peak-to-peak. This conserves power and extends battery life.
The IMP803 is available in MicroSO and SO-8 packages and in die or wafer form.

Block Diagram

Key Features

- Low Power: $420 \mu \mathrm{~A}$ typical V_{DD} current
- Wide operating voltage range - from 2.0 V to 6.5 V
- 180V peak-to-peak typical AC output voltage
- Large output load capability - drive lamps with more than 30 nF capacitance
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- Device can be Enabled/ Disabled
- Low quiescent current - 20nA (disabled)
- High-Voltage CMOS Process
- MicroSO package option

Applications

- G PS units/ Pagers/ Cellular phones
- PDAs/ Handheld computers
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Toys

SO/ MicroSO

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP803LG	2.0 V to 6.5 V	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -SO
IMP803IMA	2.0 V to 6.5 V	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -MicroSO
IMP803SX	2.0 V to 6.5 V	Yes	$25^{\circ} \mathrm{C}$	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

$\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {RSW-OSC }}$ and $\mathrm{V}_{\text {ReL-OSC }}$.

Operating Temperature Range $\ldots \ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots, \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (SO) \qquad
Power Dissipation (MicroSO) \qquad
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}$ 300 mW
-0.5 V to $\mathrm{V}_{\mathrm{CS}}(\mathrm{pin} 3)$

Note: All voltages are referenced to GND.
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{SW}}=750 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{EL}}=2.0 \mathrm{M} \Omega$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
ON-resistance of MOS Switch	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	$\mathrm{I}=100 \mathrm{~mA}$		3.5	8	Ω
Output Voltage Regulation	$\mathrm{V}_{\text {cs }}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.5 V	80	90	100	V
Output Voltage Peak-to-peak (in regulation)	$V_{A}-V_{B}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.5 V	160	180	200	V
Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current, Disabled	IDDQ	$\mathrm{V}_{\text {RSW -osc }}<100 \mathrm{mV}$		20	200	nA
Input Current at $V_{D D}$ Pin	I_{D}	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1		420	700	$\mu \mathrm{A}$
Input Current at V_{DD} Pin	I_{DD}	$V_{D D}=5.0 \mathrm{~V}$, See Figure 2		500	750	$\mu \mathrm{A}$
Input Current: $\mathrm{I}_{\text {D }}$ Plus Inductor Current	I_{N}	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, See Figure 1		20	31	mA
Output Voltage at $\mathrm{V}_{C S}$	V_{cs}	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1	60	74	100	V
V_{A-B} Output Drive Frequency	$\mathrm{f}_{\text {EL }}$	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1	300	370	430	Hz
Switching Frequency	$\mathrm{f}_{\text {sw }}$	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1	50	70	90	kHz
Switching Duty Cycle	$\mathrm{D}_{\text {sw }}$	$V_{D D}=3.0 \mathrm{~V}$, See Figure 1		88		\%

$\mathrm{V}_{\mathrm{CS}}, \mathrm{l}_{\mathrm{IN}}$ vs. $\mathrm{V}_{\text {IN }}$

$\mathrm{V}_{\mathrm{CS}}, \mathrm{I}_{\mathrm{IN}}$ vs. $\mathrm{V}_{\text {IN }}$

$I_{D D}$ vs. $V_{D D}$

Pin Descriptions

Pin Number	Name	Function
1	$V_{D D}$	Positive voltage supply for the IMP803. Inductor L may be connected here or to a separate unregulated supply.
2	$\mathrm{R}_{\text {SW-OSC }}$	Switch-mode resistor pin. Switching frequency is determined by an external resistor, $\mathrm{R}_{\text {Sw }}$.
3	C_{s}	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C_{s}.
4	L_{x}	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V_{B}	EL lamp drive. The lamp is connected in a high-voltage bridge circuit with V_{B} providing the complementary connection to V_{A}. The peak-to-peak AC voltage across the EL lamp is thus two times $\mathrm{V}_{\text {Cs }}$.
7	$V_{\text {A }}$	EL lamp drive. (See above)
8	$\mathrm{R}_{\text {EL-OSC }}$	The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor R_{EL}.

External Components

External Component	Description and Selection Guide
Diode	Catch diode. A fast reverse recovery diode, with BV > 100, such as a 1 N4148.
Capacitor $\mathrm{C}_{\text {s }}$	This is the high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10 nF and 100 nF is recommended.
Resistor R ELL	The EL lamp oscillator frequency setting resistor. This resistor, connected between the $R_{E L-o s c}$ pin and $V_{D D}$, provides an oscillator frequency inversely proportional to $R_{E L}$; as $R_{E L}$ increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A $2 \mathrm{M} \Omega$ resistor between the $\mathrm{R}_{\mathrm{EL} \text {-osc }}$ pin and the $V_{D D}$ supply results in a lamp frequency around 350 Hz : a $1 \mathrm{M} \Omega$ resistor will give $\approx 700 \mathrm{~Hz}$.
Resistor R ${ }_{\text {Sw }}$	Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the $R_{S W-O S C}$ pin and the $V_{D D}$ supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_{x} pin. When this internal switch opens, the inductor potential will forward-bias the catch diode and the current will pass through the storage capacitor C_{S}, charging it to a high voltage. Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by R_{SW} should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.
Lamp, R_{CL}	An external resistor $\left(\mathrm{R}_{\mathrm{CL}}\right)$ in series with the lamp will protect the output drivers from high transient currents during lamp commutation.

Application Information

Test and Application Circuit, 3.0V

Figure 1 shows the IMP803 configured to drive a 3-square-inch EL lamp, represented as a 10 nF capacitor. With a 3.0 V input, the EL lamp will be driven to moderate brightness.

Figure 1. 3.0V Application

Test and Application Circuit, 5.0V

Figure 2 shows a 5.0 V input application driving a 6 -square-inch EL lamp.

Figure 2. 5.0V Application

Test and Application Circut, 6.0V

At higher input voltage levels, the IMP803 will drive large EL lamps. Figure 3 shows a 6.0 V circuit configuration that will drive a 10 square-inch lamp.

1. Murata part \# LQH4N561K04 (DC resistance <14.5 Ω)
2. Larger values may be required depending upon supply impedance.

Figure 3. 6.0V Application

Enable/ Disable O peration

Figure 4 shows that the IMP803 can be enabled via a logic gate that connects R_{SW} to V_{DD}, and disabled by connecting it to ground.

Enable/Disable Table	
R $_{\text {SW }}$ Connection	IMP803 State
V_{DD}	Enabled
GND	Disabled

Note:

1. Murata part \# LQH4N561K04 (DC resistance <14.5 ת)
2. Larger values may be required depending upon supply impedance.

Figure 4. Enable/Disable Operation

Dual Supply Operation with 1.5V Battery

The IMP803 can also be operate from a single battery cell when a regulated voltage higher than 2.0 V is also available. This dual supply configuration, shown in Figure 5, uses the regulated voltage to operate the IMP803 while the energy for the highvoltage boost circuit comes from the battery.

The circuit of Figure 5 thus allows operation with batteries that are below the 2 V minimum specification or above the 6.0 V maximum operating voltage.

Figure 5. Dual Supply Operation

Switch Resistance

The IMP803 inductor switch resistance is typically below 3.5Ω, as shown in Figure 6.

Figure 6. Boost Switch On Resistance

High- Voltages Present

The IMP803 generates high voltages and caution should be exercised.

IMP525

Single Cell Battery Powered EL Lamp Driver

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	$1.0 \mathrm{mil}(25 \mathrm{microns})$
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, $1 / 2 \%$ Copper
Bond Pad Size:	100 microns per side
Die Size:	$1.35 \mathrm{~mm} \times 1.54 \mathrm{~mm}$

Pad Description

Pad Number	Name	Function
1	$\mathrm{~V}_{\mathrm{DD}}$	Positive voltage supply.
2	R $_{\text {SW-OsC }}$	Switch-mode oscillator frequency setting pad.
3	C_{S}	Boost converter storage capacitor pad.
4	$\mathrm{~L}_{\mathrm{X}}$	Inductor pad.
5	GND	Ground pad.
6	$\mathrm{~V}_{\mathrm{B}}$	EL lamp drive.
7	$\mathrm{~V}_{\mathrm{A}}$	EL lamp drive.
8	REL-osc	EL lamp oscillator frequency setting pad.
9^{*}	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location ${ }^{1}$

Pad Number	X (microns)	Y (microns)
1	1153	1092
2	476	1226
3	314	1226
4	143	1216
5	111	460
6	397	112
7	1104	112
8	1153	958
9	1153	1226

Notes 1. To bonding pad center

Ordering Information

		Description	
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active
IMP525/D	9		\bullet
IMP525/D1	9	\bullet	

IMP527

Single Cell Battery Powered EL Lamp Driver, 180V ${ }_{\text {PP }}$ Drive

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	1.0 mil (25 microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, $1 / 2 \%$ Copper
Bond Pad Size:	100 microns per side
Die Size:	$1.35 \mathrm{~mm} \times 1.54 \mathrm{~mm}$

Pad Description

Pad Number	Name	Function
1	$\mathrm{~V}_{\mathrm{DD}}$	Positive voltage supply.
2	R $_{\text {Sw-osc }}$	Switch-mode oscillator frequency setting pad.
3	C_{S}	Boost converter storage capacitor pad.
4	$\mathrm{~L}_{\mathrm{X}}$	Inductor pad.
5	GND	Ground pad.
6	$\mathrm{~V}_{\mathrm{B}}$	EL lamp drive.
7	$\mathrm{~V}_{\mathrm{A}}$	EL lamp drive.
8	R EL-osC	EL lamp oscillator frequency setting pad.
9^{*}	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location ${ }^{1}$

Pad Number	X (microns)	Y (microns)
1	1153	1092
2	476	1226
3	314	1226
4	143	1216
5	111	460
6	397	112
7	1104	112
8	1153	958
9	1153	1226

Notes 1. To bonding pad center

Ordering Information

	Disable Part Number	Pad Number	Disable Pad Active
IMP527/D			Disable Pad Not Active
IMP527/D1	9	\bullet	\bullet

iMP
 ISO 9001 Registered

IMP528

High-Voltage EL Lamp Driver, 220V PP Drive

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	$1.0 \mathrm{mil}(25$ microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, $1 / 2 \%$ Copper
Bond Pad Size:	100 microns per side
Die Size:	$1.38 \mathrm{~mm} \times 1.82 \mathrm{~mm}$

Pad Description

Pad Number	Name	Function
1	$V_{D D}$	Positive voltage supply.
2	$\mathrm{R}_{\text {SW-OsC }}$	Switch-mode oscillator frequency setting pad.
3	C_{S}	Boost converter storage capacitor pad.
4	L_{x}	Inductor pad.
5	GND	Ground pad.
6	V_{B}	EL lamp drive.
7	$V_{\text {A }}$	EL lamp drive.
8	$\mathrm{R}_{\text {EL-OSC }}$	EL lamp oscillator frequency setting pad.
9	GND	Ground pad.
10*	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location ${ }^{1}$

Pad Number	X (microns)	Y (microns)
1	152	1480
2	152	1253.5
3	152	387.75
4	152	122.5
5	1198.5	140
6	1215	395
7	1215	1208.5
8	1234	1508.5
9	998	122.5
10	382	1553.5

Notes 1. To bonding pad center

Ordering Information

	Disable Part Number	Pad Number	Disable Pad Active
IMP528/D			Disable Pad Not Active
IMP528/D1	10	\bullet	\bullet

IMP560

Power Efficient EL Lamp Driver

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	1.0 mil (25 microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, $1 / 2 \%$ Copper
Bond Pad Size:	100 microns per side
Die Size:	$1.38 \mathrm{~mm} \times 1.82 \mathrm{~mm}$

Pad Description

Pad Number	Name	Function
1	$\mathrm{~V}_{\mathrm{DD}}$	Positive voltage supply.
2	R $_{\text {SW-OSC }}$	Switch-mode oscillator frequency setting pad.
3	C_{S}	Boost converter storage capacitor pad.
4	$\mathrm{~L}_{\mathrm{X}}$	Inductor pad.
5	GND	Ground pad.
6	$\mathrm{~V}_{\mathrm{B}}$	EL lamp drive.
7	$\mathrm{~V}_{\mathrm{A}}$	EL lamp drive.
8	$\mathrm{R}_{\mathrm{EL} \text {-OSC }}$	EL lamp oscillator frequency setting pad.
9	GND	Ground pad.
10^{*}	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location ${ }^{1}$

Pad Number	X (microns)	Y (microns)
1	152	1480
2	152	1253.5
3	152	387.75
4	152	122.5
5	1198.5	140
6	1215	395
7	1215	1208.5
8	1234	1508.5
9	998	122.5
10	382	1553.5

Notes 1. To bonding pad center

Ordering Information

		Description	
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active
IMP560/D	10		\bullet
IMP560/D1	10	\bullet	

IMP803

High-Voltage EL Lamp Driver

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	$1.0 \mathrm{mil}(25$ microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, $1 / 2 \%$ Copper
Bond Pad Size:	100 microns per side
Die Size:	$1.38 \mathrm{~mm} \times 1.82 \mathrm{~mm}$

Pad Description

Pad Number	Name	Function
1	VDD	Positive voltage supply.
2	RSw-osc	Switch-mode oscillator frequency setting pad.
3	C_{s}	Boost converter storage capacitor pad.
4	Lx	Inductor pad.
5	GND	Ground pad.
6	V_{B}	EL lamp drive.
7	$V_{\text {A }}$	EL lamp drive.
8	$\mathrm{R}_{\text {EL-OSC }}$	EL lamp oscillator frequency setting pad.
9	GND	Ground pad.
10*	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location ${ }^{1}$

Pad Number	X (microns)	Y (microns)
1	152	1480
2	152	1253.5
3	152	387.75
4	152	122.5
5	1198.5	140
6	1215	395
7	1215	1208.5
8	1234	1508.5
9	998	122.5
10	382	1553.5

Notes 1. To bonding pad center

Ordering Information

		Description	
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active
IMP803SX	10		\bullet
IMP803/D1	10	\bullet	

Notes

Electroluminescent Lamp Driver Evaluation Board

Introduction

This Application Note introduces an Evaluation Board for IMP EL driver ICs. It is supplied with the IMP803 but can also be used with the IMP560 and IMP525: all 3 have identical pinouts.

EL Lamps and Drivers

An electroluminescent (EL) lamp consists of a phosphor coating on a dielectric that is sandwiched between two conductors. Electrically, it looks like a capacitor. Such a lamp requires drive from a high alternating voltage source in order to emit light. This can be obtained from IMP integrated circuits IMP803, IMP560 and IMP525 that convert low voltages into appropriate high-voltage waveforms.

Small EL lamps exhibit about 2 to $6 \mathrm{nF} / \mathrm{in}^{2}$. IMP Driver ICs are capable of powering EL lamps that have total equivalent load capacitances up to 30 nF , so this works out to a maximum of around 15 square inches. "Powering" in this context means enabling enough light for the application, which can range from LCD backlights (relatively bright in a handheld device) to pagers (medium-bright, in a poorly-lit room), to night-lights (faint, in a dark room).

IMP Driver IC System Diagram

As shown in Figure 1, these ICs contain a high-voltage MOSFET switch, an output H-bridge, and oscillators to drive each. The switch, combined with an external inductor and diode, form a step-up (boost) converter that transforms the input voltage to 4590 volts across capacitor CS. This, in turn, is switched from one side of the load (the EL lamp) to the other by a commutating bridge, driven by its own oscillator. This action causes the lamp to experience twice the C_{S} value (i.e. 90-180 volts peak-to-peak) with no DC component.

A typical application uses a switch frequency of 80 kHz and bridge commutation frequency of 360 Hz . These frequencies are controllable via external resistors; $R_{S W}$ for the boost converter and $R_{E L}$ for the output driver. $R_{E L}$ influences brightness, color and EL lamp life. R_{SW} controls converter efficiency. Both affect power consumption.

IMP Driver IC System Diagram

Figure 1. Circuitry in gray is on-chip.

Driver Variations

The IMP803, 560 and 525 have an internal regulating circuit (see Figure 2), that is useful where V_{IN} is expected to change considerably, as with an aging battery: as $\mathrm{V}_{\text {IN }}$ falls, $\mathrm{V}_{\text {OUT }}$ (and brightness) will remain substantially unaffected.

Table 1 is a general comparison of IMP EL Lamp drivers. It facilitates choices based on number of batteries, size of display, and regulation. Required display brightness will also need to be factored into the choice.

Table 1. General Characteristics of IMP EL Lamp Drivers

Device	$\mathbf{V}_{\text {IN }}$	V OUT	Regulated Output	Max. Switch R(on)
IMP803	$2.4-6.5 \mathrm{~V}$	$180 \mathrm{~V}_{\text {PP }}$	Yes	8Ω
IMP560	$2.4-6.5 \mathrm{~V}$	$120 \mathrm{~V}_{\text {PP }}$	Yes	8Ω
IMP525	$0.9-2.5 \mathrm{~V}$	$112 \mathrm{~V}_{\text {PP }}$	Yes	15Ω

Figure 2. Block Diagram for IMP circuits. Dotted components are equivalent to regulation circuitry (see text).

Basic Circuit, Plus Variations

In normal operation, V_{DD} is one or two 1.5 V cells and L 1 is a tiny ferrite-bobbin inductor. R_{SW} and R_{EL} control their respective oscillators. If a logic-controllable shutdown is desired, $R_{\text {SW }}$ may be switched between $V_{D D}$ and GND ($\mathrm{I}_{\mathrm{DDQ}}=1 \mu \mathrm{~A}$ max.). Conversely, if shutdown is via $V_{D D}, R_{S W}$ should then be connected to $V_{D D}$ as shown by the dotted line in Figure 3.
R_{CL} is included to protect the bridge against peak currents during commutation. A value of 500Ω to $2 \mathrm{k} \Omega$ is suitable.

In use, the inductor current can reach several tens of milliamperes, so in single-battery applications it is recommended that the low-current shutdown capability of the driver IC be utilized. This is done by connecting $\mathrm{R}_{\text {SW }}$ (point A on the schematics) to either $\mathrm{V}_{\mathrm{DD}}(\mathrm{ON})$ or GND (OFF). With power source(s) connected, shutdown (standby) current is typically much lower than $1 \mu \mathrm{~A}$.

Figure 3. Basic EL Lamp Driver.

Reducing Component Count

Having said that keeping $R_{C L}$ is a good idea, it is true that removing as many components as possible may also be desirable. For the IMP803, R_{EL} and R_{SW} may be combined as shown in Figure 4. Varying $R_{\text {EL }}$ causes a visible change in brightness and color, but a similar variation in $R_{S W}$ (affecting oscillator frequency and power consumption) is much less noticeable. Combining the two is thus
a valid way to save a resistor. The bypass capacitor C $_{\text {BP }}$ (IMP525 only) reduces display flicker in noisy environments, such as when there is no ground plane.

Figure 4. Using $R_{S W}$ to supply current for both switch and EL oscillators, and also serve as a low-current on/off switch (IMP803 only).

Using the circuit in Figure 5, one can utilize an available $\mathrm{V}_{\text {IN }}$ that is higher or lower than the allowable V_{DD}. The logic shutdown may also be separated from V_{DD}. Such arrangements are helpful when the inductor supply is too low for the IC, or the display size requires a voltage that is too high for the IC.

A higher $\mathrm{V}_{\text {IN }}$ will need a higher switching frequency to keep the inductor out of saturation. In all cases, note the presence of HIGH VOLTAGE!

Figure 5. General Circuit, where chip $V_{D D}$, on/off logic and $V_{I N}$ are all different.

Evaluation Board

The ELD002 is a PC board for evaluation and experimentation purposes. More compact arrangements are easily achieved by using surface-mounted components exclusively. The various possible connections mirror the options discussed in the data sheet and the Application Note. While the IMP803 is supplied on the board, other pin-compatible drivers may be substituted.

The two dark patches are the connections for the EL lamp which are made using conductive double-sided tape. The display itself is held down with ordinary double-sided tape. Taping is advantageous for several reasons, among which are that lamps with
staked connecting terminals generally cost more, and they are a possible site for mechanical (and thus electrical) failure.

As a general precaution, note that HIGH VOLTAGE exists on the board; around 180 V or so. The current level is low so there is no danger, except possible pain if a tender skin area or open cut contacts the HV sections.

There are extra holes for capacitors (if needed), and the hole spacings are wide enough to accommodate $1 / 4 \mathrm{~W}$ resistors. Corner mounting holes have also been provided.

Figure 6. Evaluation Board Layout and Schematic.

Some Battery Considerations

To keep the board light in weight, a Li-Mn power source was selected. When energized, the drain from the circuit is around 22 mA , thus the CR battery chemistry is preferred over the BR for its superior pulse performance. If long-term continual illumination is anticipated and space is not an issue, alkaline batteries may be more economical.

With the IMP803 and $560 \mu \mathrm{H}$ inductor supplied, regulation begins at about $3-3.5 \mathrm{~V}$, but display illumination appears virtually
unchanged above 2.7 V . When choosing the battery chemistry, it is a good idea to match the cell "plateau" voltages to this. For example, a typical NiCad plateau is 1.2 V under load, so more than 2 cells would be needed. Alkaline plateaus are somewhat higher, and they differ with size, shape and duty, so 2 cells could suffice. Li-Mn coin cells have their voltage plateau under load at about 2.85 volts. They can drop lower, but they also return to close to 3 V when the load is removed.

Additional Points

1) To experiment with the Figure 4 scheme, a jumper may be run from the rightmost pad of $R_{E L}$ to the leftmost pad of $C_{B P}$ (with the + above it). Start with an $R_{S W}$ of $750 \mathrm{k} \Omega$. Short leads and a ground plane are more critical in this arrangement.
2) C_{S} should be $10 \mathrm{nF}-100 \mathrm{nF}$.
3) The IMP803, IMP560 and IMP525 datasheets show performance with different inductors. For example, high-voltage regulation is reached earlier with lower L, but this requires more current. This may be partially offset by adjustment of the oscillator resistors.
4) To experiment with multiple supplies, the appropriate jumpers may be removed.
5) The inclusion of R_{CL} should be stressed: while 500Ω to $10 \mathrm{k} \Omega$ has been used, $2 \mathrm{k} \Omega$ is the best all-around value.

Layout Rules for Other Arrangements

1) A ground plane is recommended to keep stray high frequencies confined. In a very small area, the need for a ground plane may be nil. A totally surface-mount arrangement would make such a plane difficult anyway.
2) Locate high voltages away from the high-impedance elements $R_{E L}$ and $R_{S W}$.
3) Make sure that C_{S} has a rating of at least 100 V .
4) The diode should have good reverse-recovery characteristics (the general-purpose 1 N 4148 is adequate) and should be rated for pulsed BV $>100 \mathrm{~V}$ for the IMP803, and pulsed BV $>75 \mathrm{~V}$ for the IMP560 and IMP525.
5) Shutdown by a logic-level signal is possible by connecting $R_{S W}$ to ground (R_{SW} is normally connected to V_{DD}). This on/off logic uses only $1 \mu \mathrm{~A}$ max. when connected at this location.
6) Required voltage ratings for the capacitors other than C_{S} are flexible, and need only reflect actual stresses plus a safety margin.

Bill of Materials for ELD001

Component	Description	Manufacturer	Part Number
Resistors ($\pm 5 \%)$	See Table, below		
Capacitors ($\pm 20 \%)$	See Table, below	Murata	RPE121/122 Series
Switch	SPST, momentary	Panasonic	P8008S
Battery	3.0 V Li-Mn Coin	Sony Panasonic	CR2450-HE4
Inductor	L1 $=560 \mu \mathrm{H}$	Murata	LQH4N561K04
Diode	D1 $=1 \mathrm{N4148}$		
Lamp	$1.3 " \times 2.05 "$	MetroMark or other	ARclad 8001
Conductive Tape	Connects display	Adhesives Research	Type 665
Double-Sided Tape	Holds display down	$3 M$	

Key to Components and Ratings

Component	Value	Function	Comments
$\mathrm{R}_{\text {SW }}$	$30 \mathrm{k} \Omega$ to $3 \mathrm{M} \Omega$	Sets switch osc. frequency.	Decrease R to increase frequency.
R_{EL}	$500 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$	Sets bridge osc. frequency.	Decrease R to increase frequency.
R_{CL}	500Ω to $2 \mathrm{k} \Omega$	Limits output current.	Protects IC.
C_{s}	$0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$	Stores high voltage.	Use low values for large lamps.
$\mathrm{C}_{\text {BATT }}$	$0.1 \mu \mathrm{~F}, 10 \mathrm{~V}$	Supply bypass.	Keeps supply impedance low.
C_{BP}	1nF, 10V	Lowers noise at $\mathrm{R}_{\text {Sw }}$.	IMP525 only.
$\mathrm{C}_{\text {IN }}$	$0.1 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$	Supply bypass.	Keeps supply impedance low.
L1	$100 \mu \mathrm{H}$ to 1 mH	Stores energy.	Small L, high f increases $\mathrm{V}_{\text {Out }}$.
D1	100V, 10mA (1N4148)	Passes energy from L to C_{s}.	Use fast recovery type.

APPEN DIX: Introduction to EL Lamps

Chemical compounds, called phosphors, glow when energy is applied to them. This excitation energy can come from conducted or radiated electrons, or an electric field. A common example of this process is found in the emitted (radiated) electrons that impinge on the dots and stripes of color monitors and TVs, whose phosphors emit everything from pure colors to white light, depending on their formulations.

Backlights and lamps generally are simpler, employing a manganese-activated zinc sulfide phosphor ($\mathrm{ZnS}: \mathrm{Mn}$) that is excited by a high-voltage ($>40 \mathrm{~V}$) AC electric field (DC can shorten the lamp life). Fabrication involves depositing the phosphor as a thin film onto a BaTiO3 dielectric between conducting planes, like a capacitor: one of the planes is the transparent conductor, indium tin oxide (ITO). The lamp color depends on phosphor formulation, but also on its physical realization (i.e. encapsulation, resins, dyes, etc.), plus the characteristics of the drive circuitry.

The IMP line of drivers is targeted mainly at applications like backlight EL and stand-alone pre-printed or segmented lamps. Backlights are used with the Liquid-Crystal Displays found in cellular telephones, pagers, Personal Digital Assistants (PDAs), and general-purpose local lighting applications where low power consumption without heat is important (e.g. airline cockpits, medical instrumentation).
The excitation required for lamps ranges from tens to hundreds of volts, at frequencies from 60 Hz to a few kHz . Each display has an optimum combination depending on size, color, efficiency and desired brightness.
In general, the changes in brightness with frequency and voltage are nearly linear. These facts allow tradeoffs. For example, if going above a certain voltage is not allowed, an increase in drive frequency may achieve the same result.

Addendum

The new evaluation board ELD002 is now available and will be sent out to all new purchasers. This Addendum will serve to explain the differences and update the information in $\mathrm{AN}-1$.

Changes

The diagrams below show the basic wiring of ELD001 (see AN-1, Figure 6) on the left and ELD002 on the right. The difference is that, with ELD002, the 3 V cell is switched to the V_{DD} pin, and this voltage only goes to the inductor if JP1 is connected. If JP1 is open, an alternate voltage can be used to power the inductor.

ELD001

In contrast, the ELD001 switched power to the inductor, and to V_{DD} only if JP1 was connected. This was intended to demonstrate the logic-level shutdown ability of the IMP803: by using the pushbutton for the heavy current to the inductor, the V_{DD} pin could be tied to a voltage source and the chip enabled/disabled by a logic level of V_{DD} or ground applied to R_{SW}. The ELD002 board allows both features to be exercised. For ELD001 users who wish to modify their boards, the changes are shown below.

ELD002

Updates

1) $I_{D D Q}$ is listed as $1 \mu A \max$. (AN-1, pp 3, 6, 7). Extensive testing has shown this to be much too conservative: $25 n A$ is much more typical.
2) In using $R_{S W}$ to shut-down the IMP803 (only $25 n A$), $R_{E L}$ can remain connected to the $V_{D D}$ pin; only 1 resistor then needs to be switched.
3) Under some circumstances, $R_{C L}$ can be omitted. Consult IMP for details.
4) For single-battery systems (the vast majority), the capacitor shown on the diagram as $C_{I N}$ is not needed. For cases where it is needed, further "surgery" is required: cut the trace shown as (A) and reconnect it as per the dotted line.

EL Driver Demonstration PC Boards, IMP-DBM and IMP-DBS

Introduction

These Demonstration Boards provide a platform for demonstration and experimentation with IMP's EL lamp drivers IMP803, IMP560 and IMP525. The PC board has space for all of the components required for a complete application circuit. In addition, compact size facilitates their use in prototype systems.

For normal operation, the enable pad (EN), the V_{DD} pad and the V_{L} pad are all connected to the positive supply voltage. If the board is located far from the supply, a $10 \mu \mathrm{~F} / 10 \mathrm{~V}$ tantalum capacitor from V_{L} to GND should be used to keep supply impedance low (This cap, or its equivalent, is normally present in a manufactured circuit). Also, better noise immunity may be achieved by utilizing separate wires for the V_{L} and V_{DD} connections.
The $\mathrm{C}_{\text {BATT }}$ capacitor is used to bypass the supply pin of the IC. The $\mathrm{C}_{\text {SW }}$ capacitor (IMP525 only) is utilized to reduce noise on the high impedance $R_{S W}$ pin. $C_{S W}$ should never be greater than 100 pF since this can result in instability of the 525's internal oscillator.

The layout was designed to reduce the effects of noise through use of a ground plane and by separation of the high-current components (inductor, diode, and reservoir capacitor) from the high-impedance portion of the circuit (the high-value frequencysetting resistors). Additionally, the lengths of high-current traces were minimized.

If parts are replaced or exchanged by hand- soldering, care should be taken to thoroughly clean the residual flux from the board surface. Otherwise, resultant leakage currents may prevent proper operation of the part. The tight spacing and high impedances of input nodes on the PCB exacerbate this effect. The predominant impact of PCB leakage is a shift in the switch and commutation frequencies away from their designed values due to leakage currents from the $R_{S W}$ and $R_{E L}$ pins.

Figure 2. Demonstration Board Schematic.

Table 1. Bill of Materials (use as required)

Component	Package	Manufacturer and Part Number	IMP803	IMP560	IMP525
R_{SW}	0603	Any	$750 \mathrm{k} \Omega$	$750 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$
R_{EL}	0603	Any	$2 \mathrm{M} \Omega$	$2 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega$
R_{CL}	0603	Any	510Ω	-	-
L 1	1812	Murata LQH4N561K04	$560 \mu \mathrm{H}$	$560 \mu \mathrm{H}$	$560 \mu \mathrm{H}$
C_{S}	0805	NovaCap 0805B683K101NT	$68 \mathrm{nF} / 100 \mathrm{~V}$	$68 \mathrm{nF} / 100 \mathrm{~V}$	$68 \mathrm{nF} / 100 \mathrm{~V}$
$\mathrm{D} 1^{\mathrm{C}_{\mathrm{BATT}}}$	SOD80	$4148-$ type	100 V	75 V	75 V
$\mathrm{C}_{S W}$	0603	Any	Any	100 nF	100 nF

Table 2. Component Description Table

Component	Function	Comments
$\mathrm{R}_{\text {SW }}$	Sets switch frequency	Decreasing R increases frequency.
R_{EL}	Sets commutation frequency	Decreasing R increases frequency.
R_{CL}	Limits output current	Optional external part: protects bridge if $\mathrm{V}\left(\mathrm{C}_{S}\right)>80 \mathrm{~V}$ (IMP803 only).
L1	Boost inductor	Delivers energy to C_{s}.
$\mathrm{C}_{\text {S }}$	Reservoir capacitor	Delivers energy to commutating bridge.
$\mathrm{C}_{\text {SW }}$	Noise reduction capacitor	Optional, use if flickering is observed (IMP525 only).
$\mathrm{C}_{\text {BATt }}$	Supply bypass capacitor	Optional (use if missing from external circuit)
D1	Catch diode	Fast recovery diode recommended. Observe $\mathrm{BV}_{\text {REV }}$.

Package Dimensions

MicroSO (8-Pin)

MicroSO (8-Pin).eps

Parts/Reel	3000

SO (8-Pin)

Parts/Reel

Inches			Millimeters	
	Min	Max	Min	Max
MicroSO (8-Pin)				
A	-	0.0433	-	1.10
A1	0.0020	0.0059	0.050	0.15
A2	0.0295	0.0374	0.75	0.95
b	0.0098	0.0157	0.25	0.40
C	0.0051	0.0091	0.13	0.23
D	0.1142	0.1220	2.90	3.10
e	0.0256 BSC		0.65 BSC	
E	0.193 BSC		4.90 BSC	
E1	0.1142	0.1220	2.90	3.10
L	0.0157	0.0276	0.40	0.70
a	0°	6°	0°	6°
SO (8-Pin)				
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.013	0.020	0.33	0.51
C	0.007	0.010	0.19	0.25
e	0.050		1.27	
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27
D	0.189	0.197	4.80	5.00

Tape Schematic ${ }^{5}$

For Tape Feeder Reference Only Including Draft and Radii Concentric Around BO

Embossed Tape - Constant Dimensions

Tape Size	\mathbf{D}	\mathbf{E}	P0	P2	T Max.	T1 Max.
8 mm	$1.5_{-0.0}^{+0.10}$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.600	0.10
and	0.0 12 mm	$\left.\begin{array}{c}0.004 \\ -0.0\end{array}\right)$	(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)

ELD/B_102.at3

Embossed Tape - Variable Dimensions

Tape Size	A0, B0, K0	B1 See Note 4	$\begin{gathered} \text { D1 } \\ \text { See Note } 3 \end{gathered}$	F	T2	P1	W
8 mm 1/2 Pitch	See Note 1	$\begin{gathered} 4.55 \\ (0.179) \end{gathered}$	$\begin{gathered} 1.0 \\ (0.039) \end{gathered}$	$\begin{gathered} 3.5 \pm 0.05 \\ (0.138 \pm 0.002) \end{gathered}$	$\begin{aligned} & \text { 2.5 Max. } \\ & (0.098) \end{aligned}$	$\begin{gathered} 2.0 \pm 0.10 \\ (0.079 \pm 0.004) \end{gathered}$	$8.0 \begin{gathered}+0.3 \\ -0.1\end{gathered}$
8 mm						$\begin{gathered} 4.0 \pm 0.10 \\ (0.157 \pm 0.004) \end{gathered}$	$\binom{0.315^{+0.012}}{-0.004}$
12mm	See Note 1	$\begin{gathered} 8.2 \\ (0.323) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.059) \end{gathered}$	$\begin{gathered} 5.5 \pm 0.05 \\ (0.217 \pm 0.002) \end{gathered}$	$\begin{aligned} & \text { 6.5 Max. } \\ & (0.256) \end{aligned}$	$\begin{gathered} 4.0 \pm 0.10 \\ (0.157 \pm 0.004) \\ \hline \end{gathered}$	$\begin{gathered} 12.0 \pm 0.30 \\ (0.472 \pm 0.012) \end{gathered}$
12 mm Double Pitch						$\begin{gathered} 8.0 \pm 0.10 \\ (0.315 \pm 0.004) \\ \hline \end{gathered}$	

Notes: 1. $A 0, B 0$ and $K 0$ are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity ($\mathrm{A} 0, \mathrm{BO}$ and K 0) must be within $0.05 \mathrm{~mm}(0.002)$ minimum and $0.50 \mathrm{~mm}(0.020)$ maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see Component Rotation).
2. Tape with components shall pass around radius.
3. The embossment hole location shall be measured from the spocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
4. B1 dimension is a reference dimension for tape feeder clearance only.
5. Electronic Industries Association, Standard EIA-481-1.

Tape Layout

Component Rotation

Bending Radius

Emboss04.eps

Tape Camber (Top View)

Allowable camber to be $1 \mathrm{~mm} / 100 \mathrm{~mm}$ nonaccumulative over 250 mm .
Emboss05.eps

Tape Leader and Trailer Dimensions

Reel Dimension

Tape Size	A Max.	B Min.	C	D Min.	N Min.	W1	W2 Max.	W3
8 mm	$\begin{gathered} 330 \\ (12.992) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.059) \end{gathered}$	$\begin{gathered} 13.0 \pm 0.20 \\ (0.512 \pm 0.008) \end{gathered}$	$\begin{gathered} 20.2 \\ (0.795) \end{gathered}$	$\begin{gathered} 50 \\ (1.969) \end{gathered}$	$\left.\begin{array}{c} 8.4+1.5 \\ -0.0 \\ (0.331+0.059 \\ -0.0 \end{array}\right)$	$\begin{gathered} 14.4 \\ (0.567) \end{gathered}$	$\begin{gathered} \text { 7.9 Min. } \\ \text { (0.311) } \\ \text { 10.9 Max. } \\ (0.0429) \end{gathered}$
12 mm						$\begin{gathered} 12.4+2.0 \\ -0.0 \\ \binom{0.488+0.078}{-0.0} \end{gathered}$	$\begin{gathered} 18.4 \\ (0.724) \end{gathered}$	$\begin{gathered} \text { 11.9 Min. } \\ \text { (0.469) } \\ \text { 15.4 Max. } \\ (0.607) \end{gathered}$

Tape Layout

IMP, Inc.
Corporate Headquarters
2830 North First Street

San Jose, CA 95134

Main: 408.432.9100
Sales: 408.434.1277
Fax: 408.434.1215
E-mail: info@impinc.com
Web: www.impweb.com
Asia Pacific Area Sales Office

Philip Wong

IMP, Inc.
391A Orchard Road
\#12-01, Ngee Ann City Tower A
Singapore 238873
Tel: $\quad 65.838 .5046 \times 225$
Fax: $\quad 65.235 .9340$
E-mail: philipw@impinc.com
Eastern Area Sales Office
Dan Rakosky
IMP, Inc.
77 Old Usquepaugh Road
West Kingston, RI 02892
Tel: 401.783.8653
Fax: 401.783.8532
E-mail: drakosky@ids.net
Central Area Sales Office
John Watson
IMP, Inc.
3100 Independence Pkwy
Ste. 311-366
Plano, TX 75075
Tel: $\quad 972.964 .0836$
Fax: 972.758.0147
E-mail: john@augustmail.com
Western Area Sales Office
Michael Turner
IMP, Inc.
2830 North First Street
San Jose, CA 95134
Tel: $\quad 408.434 .1228$
Fax: $\quad 408.434 .1215$
E-mail: mturner@impinc.com
IMP Foundry Services
Michael Turner
IMP, Inc.
2830 North First Street
San Jose, CA 95134
Tel: $\quad 408.434 .1228$
Fax: $\quad 408.434 .1215$
E-mail: mturner@impinc.com
Web: www.impweb.com

North American Representatives	
Alabama	
BITS, Inc.	
Huntsville, AL	
Tel:	256.534.4020
Fax:	256.534.0410
Web:	www.bits1.com
Alaska	
ELREPCO - Northwest	
Beaverton, OR	
Tel:	503.520.1900
Fax:	503.520.1906
Arizona	
NELCO TWO Company	
Chandler, AZ	
Tel:	602.726.2334
	602.726.2338
Arkansas	
Kruvand Associates, Inc.	
Richardson, TX	
Tel:	972.437.3355
Fax:	972.680.8854
Web:	www.kruvand.com
Kingwood, TX	
Tel:	713.956.6741
Fax:	972.680.8854
Austin, TX	
Tel:	512.219 .9441
	972.680.8854
California: Northern	
Quorum Technical Sales	
Santa Clara, CA	
Tel:	408.980.0812
Fax:	408.748.1163
Sacramento Reno Area	
Quorum Technical Sales	
Paradise, CA	
Tel:	530.877 .5772
Fax:	530.699.4007
California: Southern	
Spectrum Rep Company	
Irvine, CA	
Tel:	949.461.5280
Fax:	949.461.5290
Rancho Santa Margarita, CA	
Tel:	949.766.6700
Fax:	949.766.6701
Mission Viejo, CA	
Tel:	949.367 .3132
Fax:	949.367.3133
San Diego, CA	
Tel:	619.618.1440
Fax:	619.618 .1442

IMP Sales Offices and Representatives

Maryland
Astrorep Mid Atlantic, Inc.
Warminister, PA
Tel: $\quad 215.957 .9580$
Fax: 215.957.9583
Web: www.astrorep.com
Massachusetts S-J New England North Billerica, MA
Tel: $\quad 978.670 .8899$
Fax: $\quad 978.670 .8711$
Mexico
Sonora and Chilhuahua Areas
NELCO TWO Company
El Paso, TX
Tel: $\quad 915.833 .7300$
Fax: 915.833.1771

Monterrey Area

Kruvand Associates, Inc.
Col. Del Valle, C.P. Mexico
Tel: \quad 52.8.335.88.67
Fax: 52.8.335.10.65
Web: www.kruvand.com
Michigan
Schillinger Associates, Inc.
Kokomo, IN
Tel: $\quad 765.457 .7241$
Fax: 765.457.7732
Minnesota
Matrix Marketing Group
Bloomington, MN
Tel: $\quad 612.835 .6977$
Fax: 612.835.6822
Mississippi
BITS, Inc.
Huntsville, AL
Tel: $\quad 256.534 .4020$
Fax: $\quad 256.534 .0410$
Web: www.bits1.com

Missouri

Central Tech Sales, Inc.
St. Louis, MO
Tel: $\quad 314.878 .6336$
Fax: 314.878.6550

Montana

NELCO TWO Company
Boise, ID
Tel: $\quad 208.343 .9171$
Fax: 208.343.9170
Nebraska
Central Tech Sales, Inc.
St. Louis, MO
Tel: $\quad 314.878 .6336$
Fax: $\quad 314.878 .6550$

New Hampshire
 S-J New England
 North Billerica, MA
 Tel: $\quad 978.670 .8899$
 Fax: $\quad 978.670 .8711$

New Jersey	
Northern New Jersey Area	
Astrorep New York, Inc.	
Babylon, NY	
Tel:	516.422 .2500
Fax:	516.422 .2504
Web:	www.astrorep.com

Southern New Jersey Area Astrorep Mid Atlantic, Inc.
Warminister, PA
Tel: $\quad 215.957 .9580$
Fax: 215.957.9583
E-mail:
100710.546@compuserve.com

Web: www.astrorep.com
New Mexico
NELCO TWO Company
Albuquerque, NM
Tel: $\quad 505.293 .1399$
Fax: 505.293.1011

New York

Metro
Astrorep New York, Inc.
Babylon, NY
Tel: $\quad 516.422 .2500$
Fax: $\quad 516.422 .2504$
Web: www.astrorep.com
Upstate
Quality Components
Manlius - Main office
Tel: $\quad 315.682 .8885$
Fax: $\quad 315.682 .2277$
North Carolina
Eastern Area
BITS, Inc.
Raleigh, NC
Tel: $\quad 919.807 .1000$
Fax: 919.807.1001
Web: www.bits1.com

Western Area

BITS, Inc.
Charlotte, NC
Tel: $\quad 704.540 .8185$
Fax: $\quad 704.540 .8183$
Web: www.bits1.com
North Dakota
Matrix Marketing Group
Bloomington, MN
Tel: $\quad 612.835 .6977$
Fax: 612.835.6822
South Dakota
Matrix Marketing Group
Bloomington, MN
Tel: $\quad 612.835 .6977$
Fax: 612.835.6822

Ohio

The Lyons Corporation
Westernville, OH
Tel: \quad 614.895.1447
Fax: 937.278.3609

Oklahoma
Kruvand Associates, Inc.
Richardson, TX
Tel: $\quad 972.437 .3355$
Fax: $\quad 972.680 .8854$
Web: www.kruvand.com
Austin, TX
Tel: $\quad 512.219 .9441$
Fax: $\quad 972.680 .8854$
Web: www.kruvand.com
Oregon
ELREPCO - Northwest
Beaverton, OR
Tel: $\quad 503.520 .1900$
Fax: 503.520.1906
Pennsylvania
Eastern Area
Astrorep Mid Atlantic, Inc.
Warminister, PA
Tel: $\quad 215.957 .9580$
Fax: 215.957.9583
Web: www.astrorep.com
Western Area
The Lyons Corporation
Shelocta, PA
Tel: 724.354.3105
Fax: 937.278.3609
Web: www.astrorep.com
Puerto Rico
Marathon Technical Sales
Mayaguez, PR
Tel: $\quad 787.831 .4050$
Fax: 787.831.4250
Web:
www.marathontech.com
Rhode Island
S-J New England
North Billerica, MA
Tel: $\quad 978.670 .8899$
Fax: 978.670.8711
South Carolina
BITS, Inc.
Charlotte, NC
Tel: $\quad 704.540 .8185$
Fax: 704.540.8183
Web: www.bits1.com
Tennessee
Eastern Area
BITS, Inc.
Charlotte, NC
Tel: $\quad 704.540 .8185$
Fax: 704.540.8183
Web: www.bits1.com
Western Area
Huntsville, AL
Tel: $\quad 256.534 .4020$
Fax: $\quad 256.534 .0410$
Web: www.bits1.com

Texas
Kruvand Associates, Inc.
Richardson, TX
Tel: $\quad 972.437 .3355$
Fax: 972.680.8854
Web: www.kruvand.com

Houston Area

Kingwood, TX
Tel: $\quad 713.956 .6741$
Fax: $\quad 972.680 .8854$
Web: www.kruvand.com
Austin Area
Austin, TX
Tel: $\quad 512.219 .9441$
Fax: 972.680.8854
Web: www.kruvand.com
El Paso Area
NELCO TWO Company
Albuqerque, NM
Tel: $\quad 505.293 .1399$
Fax: 505.293.1011

Vermont

S-J New England
North Billerica, MA
Tel: $\quad 978.670 .8899$
Fax: 978.670 .8711

Virginia

Astrorep Mid Atlantic, Inc.
Charlottsville, VA
Tel: $\quad 804.293 .7717$
Fax: $\quad 804.293 .3447$
Web: www.astrorep.com
Washington
ELREPCO - Northwest
Redmond, WA
Tel: $\quad 425.885 .5880$
Fax: $\quad 425.882 .0642$
Washington D.C.
Astrorep Mid Atlantic, Inc.
Warminister, PA
Tel: $\quad 215.957 .9580$
Fax: 215.957.9583
Web: www.astrorep.com
Wisconsin
Eastern Area
Horizon Technical Sales, Inc.
Hartford, WI
Tel: $\quad 414.670 .6776$
Fax: $\quad 414.670 .6778$

Western Area

Matrix Marketing Group
Bloomington, MN
Tel: $\quad 612.835 .6977$
Fax: $\quad 612.835 .6822$
Wyoming
NELCO TWO Company
Boise, ID
Tel: 208.343.9171
Fax: $\quad 208.343 .9170$

Products are distributed in the U.S. by Jaco Electronics, Inc.

Jaco Corporate Headquarters

145 Oser Avenue
Hauppauge, NY 11788
Tel: $\quad 516.273 .5500$
TOLL FREE: 800.989.JACO
E-mail: info@jacoelectronics.com
Internet: www.jacoelectronics.com

Eastern Region

NY, N. NJ, MA, CT, RI, VT, ME, MD, WV, VA, PA, S. NJ,
DE, NC, SC, TN,
MS, AL, GA, KY, FL
Jaco Electronics, Inc.
145 Oser Avenue
Hauppauge, NY 11788
Tel: $\quad 516.273 .5500$
Fax: 516.273.5799
Jaco Electronics, Inc.
1053 East Street
Tewksbury, MA 01876
Tel: $\quad 978.640 .0010$
Fax: 978.640.0755
E-mail: jacomass@aol.com
Jaco Electronics, Inc.

River Center

10260 Old Columbia Road
Columbia, MD 21046
Tel: $\quad 410.995 .6620$
Fax: $\quad 410.995 .6032$
E-mail:
jacomd@mindspring.com

Jaco Electronics, Inc.

1191 E. Newport Center Dr.
Deerfield Beach, FL 33442
Tel: $\quad 954.425 .0304$
Fax: 954.425.8077
E-mail:
jacofla@mindspring.com
Jaco Electronics, Inc.
5204 Greens Dairy Road
Raleigh, NC 27616
Tel: $\quad 919.876 .7767$
Fax: $\quad 929.876 .6964$
E-mail:
jacose@ mindspring.com

Southwest Region

S. CA, NV, AZ

Jaco Electronics, Inc.
2282 Townsgate Road
Westlake, CA 91361
Tel: 805.495.9998
Fax: 805.494.3864
E-mail: jacowest@earthlink.net
Jaco Electronics, Inc.
22815 Savi Ranch Pkwy Ste. E
Yorba Linda, CA 92887
Tel: $\quad 714.283 .8185$
Fax: 714.283.8191
E-mail: jacooc@earthlink.net
Jaco Electronics, Inc.
521 S. 48th Street, Ste. 104
Tempe, AZ 85281
Tel: $\quad 602.967 .1114$
Fax: 602.967.1144
E-mail:
jacoarizona@earthlink.net

Northwest Region

N. CA, MT, WY, CO, WA, OR, ID, UT

Jaco Electronics, Inc.

4010 Moorpark Ave, Ste. 201
San Jose, CA 95117
Tel: $\quad 408.261 .6700$
Fax: 408.261.6717
E-mail: jacosj@pacbell.net
Jaco Electronics, Inc.
4900 SW Griffith Dr, Ste. 250
Beaverton, OR 97005
Tel: $\quad 503.626 .1439$
Tel: \quad 800.245.JACO
Fax: 503.626.0979
E-mail:
info@jacopacificnw.com

Jaco Electronics, Inc.

17220 127th Place N.E., Ste. 300
Woodinville, WA 98072
Tel: 425.481 .3372
Tel: $\quad 800.245 . J A C O$
Fax: 425.481.1664
E-mail:
macsz28@worldnet.att.net

Central Region

TX, OK, KS, LA, AR, W. MO, NE, MN, ND, SD, IA, WI, IL, IN, MI, E. MO

Jaco Electronics, Inc.
1209 N. Glenville Drive
Richardson, TX 75081
Tel: $\quad 972.234 .5565$
Fax: $\quad 972.238 .7068$
E-mail: jacotx@flash.net
Jaco Electronics, Inc.
2120-A Braker Lane
Austin, TX 78758
Tel: $\quad 512.835 .0220$
Fax: $\quad 512.339 .9252$
E-mail:
jacoaus@mindspring.com

Jaco Electronics, Inc.

101 E. Commerce Drive
Schaumburg, IL 60173
Tel: $\quad 847.884 .6620$
Fax: 847.884.7573
E-mail:
jheerhold@jacoelectronics.com
Jaco Electronics, Inc.
10340 Viking Drive, Ste. 115
Eden Prairie, MN 55344
Tel: $\quad 612.941 .2757$
Fax: 612.941.1989
E-mail: jacomn@theoffice.com

IMP, Inc.
Corporate Headquarters
2830 North First Street

San Jose, CA 95134

Main: 408.432.9100
Sales: 408.434.1277
Fax: 408.434.1215
E-mail: info@impinc.com
Internet: www.impweb.com
Asia Pacific Area Sales Office
Philip Wong
IMP, Inc.
391A Orchard Road
\#12-01, Ngee Ann City Tower A
Singapore 238873
Tel: $\quad \mathbf{6 5 - 8 3 8 . 5 0 4 6} \times 225$
Fax: $\quad 65.235 .9340$
E-mail: philipw@impinc.com
Australia
Arrow Electronics Australia Pty
Ltd.
Headquarters
9 Bastow Place
Mulgrave VIC 3170
Australia
Tel: $\quad 61.3 .9574 .9300$
Fax: 61.3.9561.2148
E-mail:
simpson@arwnet.com.au
Web: www.arrow.com.au
169 Unley Rd
1st Floor, Ste. 16
Unley SA 5061
Australia
Tel: $\quad 618.232 .3922$
Fax: 618.232.3929
Web: www.arrow.com.au
17 Bowen Bridge Rd
Unit 43
Herston QLD 4006
Australia
Tel: $\quad 61.7 .3216 .0770$
Fax: 61.7.3216.0772
Web: www.arrow.com.au
64 Canning Hwy, Ste. 1
Victoria Park WA 6100
Australia
Tel: 61.9.472.3855
Fax: 61.9.470.3273
Web: www.arrow.com.au
Level 4, 5 Belmore Street
Burnwood NSW 2134
Australia
Tel: 61.2.9745.1400
Fax: $\quad 61.29745 .1401$
Web: www.arrow.com.au

China	
Wuhan P\&S Electronics Co.	
Ltd.	
15 Shuo Dao Quan Road	
Wuhan, Hubei 430079	
P.R.C.	
Tel:	86.27.87493500
	86.27.87493506
Fax:	86.27.87491166
Web:	www.p8s.com
Beijing	
Tel:	86.10.62549897
Fax:	86.10.62536518
Web:	www.p8s.com
Shanghai	
Tel:	86.21.64712494
Fax:	86.21.64714208
Web:	www.p8s.com
Shenzhen	
Tel:	86.755.3245517
Fax:	86.755.3269613
Web:	www.p8s.com
Chengdu	
Tel:	86.28.5575657
Fax:	86.28.5563631
Web:	www.p8s.com
Nanjing	
Tel:	86.25.6618571
Fax:	86.25.6509932
Web:	www.p8s.com
Wuhan	
Tel:	86.27.87862631
Fax:	86.27.87862632
Web:	www.p8s.com
Xi'an	
Tel:	86.29.5214247
Fax:	86.29.5218840
Web:	www.p8s.com
Czech Republic	
Computer Controls AG	
Svetova 10	
18000 Prague 8	
Czech Republic	
Tel:	42.2.66.31.30.53
Fax:	42.2.684.00.80
Denmark	
Dan-Contact (a member of	
the TEKELEC group)	
Smakkegaardsvej 145	
DK-2820 Gentofte	
Denmark	
Tel:	45.39.68.36.33
Fax:	45.39.68.33.62

Japan
Teksel Co., Ltd.
Headquarters
TBC, 2-27-10 Higashi,
Shibuya-Ku, Toyko, 150-0011
Japan
Tel: 81.35.467.9105
Fax: 81.35.467.9346
E-mail: imp@teksel.co.jp
Web: www.teksel.co.jp
Osaka Branch
Shin Osaka Meikou Building
4-3-12 Miyahara,Yodogawa-Ku,
Osaka-Shi 532-0003
Japan
Tel: 81.66.399.5000
Fax: 81.66.399.0999
Web: www.teksel.co.jp
Nagoya Branch
KS Building
3-18-28 Marunouchi, Naka-Ku
Nagoya-Shi 460-0002
Japan
Tel: 81.52.971.3611
Fax: 81.52.971.3622
Web: www.teksel.co.jp
Nagano Branch
OAU Building
2-1-22 Tenjin, Ueda-Shi
Nagano 386-0025
Japan
Tel: $\quad 81.268 .23 .7411$
Fax: $\quad 81.268 .23 .7412$
Web: www.teksel.co.jp

Japan

Teksel Co., Ltd.
Kyusyu Branch
BDai 5 Hakata Kaisei Building
1-18-25 Hakata Eki-Higashi,
Hakata-Ku Fukuoka-Shi
Fukuoka 812-0013
Japan
Tel: $\quad 81.92 .531 .7277$
Fax: 81.92.531.9960
Web: www.teksel.co.jp

Korea

Acetronix
5th Floor Namhan Bldg.
76-42 Hannam-Dong
Yongsan-Ku, Seoul
Korea
Tel: $\quad 822.796 .4561$
Fax: 822.796.4563
WaveTech Korea, Co., Ltd
3F, Cest Bien Bldg., 542-4
Shinsa-dong, Kangnam-ku
Seoul 135-120
Korea
Tel: $\quad 822.545 .1231$
Fax: 822.545.1245
Web: www.wavetech.co.kr

AIN Electronics, Inc.
Rm. 203, Blk A, Sin-Sung

Officetel

1588-1 Seocho-Dong, Seocho-ku
Seoul 135-120
Korea
Tel: $\quad 8222.581 .1741$
Fax: $\quad 822.581 .1740$

Liechtenstein

Computer Controls $\boldsymbol{A G}$
Neunbrunnenstr. 55
CH-8050 Zurich
Switzerland
Tel: 41.1.308.66.66
Fax: 41.1.308.66.55

Malaysia

Sabre Technologies Pte. Ltd.
104 Boon Keng Road
\#07-07 Kallang Basin
Industrial Estate
Singapore 1233
Tel: $\quad 65.2932003$
Fax: $\quad 65.2930661$

Netherlands

Tekelec Airtronic B. V.
Ypsilon House
Engelandlaan 310
2711 DZ Zoetermeer
2701 Ac Zoetermeer
Netherlands
$\begin{array}{ll}\text { Tel: } & 31.79 .3461430 \\ \text { Fax: } & 31.79 .341750\end{array}$
New Zealand
Arrow Electronics Australia Pty

Ltd.

19 Pretocia Street
P.O. Box 31186

Lower Hutt 6009
New Zealand
Tel: $\quad 64.4 .570 .2260$
Fax: 64.4.566.2111
Poland
Computer Controls AG c/o WG Electronics
ul. Nowogrodzka 42
00-695 Warszawa
Poland
Tel: $\quad 48.22 .629 .57 .58$
Fax: 48.22.628.48.50
Singapore
Sabre Technologies Pte. Ltd.
104 Boon Keng Road
\#07-07 Kallang Basin
Industrial Estate
Singapore 339775
Tel: $\quad 65.2932003$
Fax: $\quad 65.2930661$

Spain
Tekelec Espana S.A.
General Aranaz, 49
28027 Madrid
Spain
Tel: $\quad 34.91 .320 .4160$
Fax: $\quad 34.91 .320 .1018$

Sweden

Martinsson Elektronik AB
Instrumentvagen 16
Box 9060
S-12609 HagerSte.n
Sweden
Tel: 46.8.744.0300
Fax: 46.8.744.7922

Switzerland

Computer Controls $A G$
Neunbrunnenstr. 55
CH-8050 Zurich
Switzerland
Tel: $\quad 41.1 .308 .66 .66$
Fax: 41.1.308.66.55
Taiwan
Maxtek Technology Co., Ltd.
3F, No. 197, Sec. 4,
Nanking E. Road, Taipei
Taiwan
Tel: 886.2.713.0209
886.2.718.2084

Fax: 886.2.712.6780
Thailand
Massworld Co., Ltd.
72/30 Ban Phunravee 1
Rama 3 Road
Yannawa Bangkok 10120
Thailand
Tel: 66.2.2944930
Fax: 66.2.2942074
United Kingdom
Sequoia Technology Ltd.
(a member of the
TEKELEC group)
Tekelec House, Back Lane,
Spencers Wood, Reading,
Berkshire RG7 1PW
United Kingdom
Tel: $\quad 44.118 .925 .8000$
Fax: 44.118.925.8020
For any location not listed, please direct inquiries to IMP sales.

REPLIST 6-11-99

From Oakland International Airport

Go South on 880 and turn right at the Montague Expressway exit, move left out of the car pool lane. Turn left on Zanker R oad and then turn right on Daggett Drive.

From San Francisco International Airport
Go South on 101 to the Montague Expressway exit (east). Turn right on Zanker R oad and then turn right

For Additional Directions
408-432-9100

From San Jose International Airport
From Terminal Drive go to Airport Blvd. From A irport Blvd., turn onto Airport Pkwy. (Airport Pkwy becomes Brokaw R oad after 101). Turn left on North First Street, then turn right on Daggett Drive.

Quality Priority

Quality in everything we do is a fundamental IMP commitment. Quality may not be sacrificed for any other priority. Before any action is taken, the effect on quality as seen by employees and by customers must be considered.

Product Quality Conformance

Products and services for our customers will conform to all requirements. Products will meet performance specifications. Services will be complete, meet described requirements, and will be in a format appropriate for the customer's use. If a specification cannot be met in full, the customer will be advised and a new specification will be negotiated.

Product and Process Quality Improvement

All processes, manufacturing, manufacturing planning, customer service, product design and design of manufacturing processes shall utilize Total Quality Management concepts including Statistical Process Control techniques and designed experiments to ensure continual improvement of products and services.

Employee Responsibility

Each employee is responsible for performing their work correctly and completely. This responsibility for quality performance applies to all design work, development work, manufacturing work and to all supporting work. It applies to all employee levels. It cannot be abandoned or delegated. No one else can take responsibility.

IMP's Commitment of Support

IMP will provide the tools, the training, and the time necessary for employees to meet their responsibilities.

Employee Participation

IM P encourages all employees to take part in the open discussion, analysis and resolution of problems through participation in quality and productivity teams or through personal suggestions.

DET NORSKE VERITAS QUALITY SYSTEM CERTIFICATE

Certificate No. 96-HOU-AQ-8474
This is to certify that the Quality System
of

IMP INC.

at
2890 North First Street, San Jose, CA 95134 USA
Has been found to conform to Quality Standard:
ISO 9001, 1994
This Certificate is valid for the following products/service ranges:
DESIGN AND MANUFACTURE OF ANALOG AND MIXED-SIGNAL INTEGRATED CIRCUITS AND WAFER FABRICATION SERVICES

Mace and date:
Houston, Texas; 01 November 1996
for the Accredited Unit:
Det Noenke Veritaa Certification, Inc.
Houston, Texia, USA
DNV Management System Certification

Aceredited by the RwA.

This certificate is valid until:
08 August 1999

Initial Certification Date:

IMP offers higher performance, lower-power microprocessor supervisors that are pin compatible with devices from Dallas Semiconductor and Maxim Integrated Products. For the latest information visit www.impweb.com or send specific requests to info@impinc.com.

P Supervisor Products: Low Power Alternatives to Maxim

Part Number	Threshold Voltage (V)	Backup Battery Switch	Watchdog Timer	Power Fail Monitor	Manual Reset	RESET Polarity
IMP690A	4.65	X	X	X		LOW
IMP692A	4.40	X	X	X		LOW
IMP705	4.65		X	X	X	LOW
IMP706	4.40		X	X	X	LOW
IMP707	4.65			X	X	L \& H
IMP708	4.40			X	X	L \& H
IMP802L	4.65	X	X	X		LOW
IMP802M	4.40	X	X	X		LOW
IMP805L	4.65	X	X	X		HIGH
IMP809	2.63 to 4.63					LOW
IMP810	2.63 to 4.63					HIGH
IMP811	2.63 to 4.63				X	LOW
IMP812	2.63 to 4.63				X	HIGH
IMP813L	4.65		X	X	X	HIGH

Block Diagrams

IMP690A, IMP692A, IMP802L, IMP802M and IMP805L

IMP705, IMP706 and IMP813L

IMP707 and IMP708

μ P Supervisor Products: Low Power Alternatives to Dallas Semiconductor

IMP Ordering Part Number	RESET Voltage (V)	$\begin{gathered} \hline \text { RESET } \\ \text { Tolerance (\%) } \end{gathered}$	RESET Time (ms)	RESET Polarity	Push-Pull Output Stage	Open Drain Output	$\begin{aligned} & \hline \text { 8-Pin SO } \\ & \text { Package } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { TO-92 } \\ \text { Package } \\ \hline \end{gathered}$	SOT-23 Package	SOT-223 Package
IMP1810-5	4.620	5	150	LOW	X			X		
IMP1810-10	4.370	10	150	LOW	X			X		
IMP1810-15	4.120	15	150	LOW	X			X		
IMP1810R-5	4.620	5	150	LOW	X				X	
IMP1810R-10	4.370	10	150	LOW	X				X	
IMP1810R-15	4.120	15	150	LOW	X				X	
IMP1811-5	4.620	5	150	LOW		X		X		
IMP1811-10	4.350	10	150	LOW		X		X		
IMP1811-15	4.130	15	150	LOW		X		X		
IMP1811R-5	4.620	5	150	LOW		X			X	
IMP1811R-10	4.350	10	150	LOW		X			X	
IMP1811R-15	4.130	15	150	LOW		X			X	
IMP1812-5	4.620	5	150	HIGH	X			X		
IMP1812-10	4.350	10	150	HIGH	X			X		
IMP1812-15	4.130	15	150	HIGH	X			X		
IMP1812R-5	4.620	5	150	HIGH	X				X	
IMP1812R-10	4.350	10	150	HIGH	X				X	
IMP1812R-15	4.130	15	150	HIGH	X				X	
IMP1815-5	3.060	5	150	LOW	X			X		
IMP1815-10	2.880	10	150	LOW	X			X		
IMP1815-20	2.550	20	150	LOW	X			X		
IMP1815R-5	3.060	5	150	LOW	X				X	
IMP1815R-10	2.880	10	150	LOW	X				X	
IMP1815R-20	2.550	20	150	LOW	X				X	
IMP1816-5	3.060	5	150	LOW		X		X		
IMP1816-10	2.880	10	150	LOW		X		X		
IMP1816-20	2.550	20	150	LOW		X		X		
IMP1816R-5	3.060	5	150	LOW		X			X	
IMP1816R-10	2.880	10	150	LOW		X			X	
IMP1816R-20	2.550	20	150	LOW		X			X	
IMP1817-5	3.060	5	150	HIGH	X			X		
IMP1817-10	2.880	10	150	HIGH	X			X		
IMP1817-20	2.550	20	150	HIGH	X			X		
IMP1817R-5	3.060	5	150	HIGH	X				X	
IMP1817R-10	2.880	10	150	HIGH	X				X	
IMP1817R-20	2.550	20	150	HIGH	X				X	
IMP1233D-5	4.625	5	350	LOW		X		X		
IMP1233D-10	4.375	10	350	LOW		X		X		
IMP1233D-15	4.125	15	350	LOW		X		X		
IMP1233DZ-5	4.625	5	350	LOW		X				X
IMP1233DZ-10	4.375	10	350	LOW		X				X
IMP1233DZ-15	4.125	15	350	LOW		X				X
IMP1233M-55	4.625	5	350	LOW		X		X		
IMP1233M-5	4.375	10	350	LOW		X		X		
IMP1233M-3	2.720	15	350	LOW		X		X		
IMP1233MS-55	4.625	5	350	LOW		X	X			
IMP1233MS-5	4.375	10	350	LOW		X	X			
IMP1233MS-3	2.720	15	350	LOW		X	X			

USB Power Switches

IMP offers a full complement of Universal Serial Bus (USB) power switches that are higher-performance equivalents to devices from Micrel.

Part Number	\# of Switches	"ON" Resistance ($\mathbf{m} \boldsymbol{\Omega}$)	Enable Polarity
IMP2525-1	1	140	HIGH
IMP2525-2	1	140	LOW
IMP2525A-1 Low ON Resistance	1	70	HIGH
IMP2525A-2 Low ON Resistance	1	70	LOW
IMP2526-1	2	140	HIGH
IMP2526-2	2	140	LOW
IMP2527-1	4	200	HIGH
IMP2527-2	4	200	LOW

EL Lamp Applications

- Pagers
- Caller ID
- Appliances
- Telephones

Thermostats
Weight Scales

- Cellular Phones
- Digital Compasses
- HPCs (Handheld PCs)
- Temperature Monitors
- Automotive Dashboards
- GPS Handheld Receivers
- PDAs (Personal Digital Assistants)
- Watches and Alarm Clocks
- Test and Medical Equipment

Fold

Sample Requests and New Product Updates

Name:

Position:

Company:
Address:

City:	State/Province:
Zip Code:	Country:
Phone \#:	Fax \#:
Email Address:	

Fold

ISO 9001 Registered

MS-200

CUSTOMER SERVICE
IMP INC
2830 N 1ST ST
SAN JOSE CA 95134-9887

ISO 9001 Registered
IMP, Inc.
Corporate Headquarters
2830 N. First Street
San Jose, CA 95134-2071
Tel: 408-432-9100
Tel: 800-438-3722
Fax: 408-434-0335
e-mail: info@impinc.com
June 1999
http://www.impweb.com

[^0]: All devices are available in die form

