Electroluminescent Lamp Drivers

24

SEND

EL Lamp Applications

TV/VCR/Audio/Cable Box Remote Controllers

IMP, Inc. - Company Profile

IMP, Inc. designs, manufacturers and markets standard-setting analog integrated circuits and specialty analog wafer foundry processes for data communications interface and power management applications in computer, communications and control systems. IMP products are sold through a worldwide network of sales representatives and distributors.

Company Facilities

IMP headquarters and ISO 9001 certified wafer fabrication and test facility are located in San Jose, California. Product development centers are in Pleasanton, California, and Lee, New Hampshire. Sales offices are in San Jose, California; Dallas, Texas; West Kingston, Rhode Island and Singapore.

Principal Markets

Data Communications Interface – Internal system data communications circuits, including single-ended (SE), low voltage differential (LVD) and multimode (SE/LVD) Small Computer Systems Interface (SCSI) terminators.

Power Management – Circuits that generate, distribute, protect and manage the thermal and power consumption characteristics of hand-held, portable and battery-powered systems. Portable computers, mobile and wireless communication devices and battery-powered medical systems are typical market segments. Example products include electroluminescent lamp drivers, microprocessor supervisors, voltage monitors, low dropout voltage regulators, and high-frequency switching converters.

Wafer Fabrication and Manufacturing Services

High-volume, analog and mixed-signal wafer foundry services on low-power, high-voltage (100V and above), CMOS, BiCMOS, and EEPROM processes, including turnkey packaging and test capabilities. Fabrication services include database production using IMP standard processes, and porting of customerowned technology.

For More Information

Visit the IMP web site at **www.impweb.com**; email **info@impinc.com** or contact IMP headquarters at 408.432.9100/800-438-3722.

Table of Contents

EL Driver Product Line Summary	iv
EL Lamp Driver Development Kits	vi
Data Sheets	
IMP525	1
IMP527	7
IMP528	13
IMP560	17
IMP803	23
Die Specifications	
IMP525 - Die Specifications	31
IMP527 - Die Specifications	
IMP528 - Die Specifications	33
IMP560 - Die Specifications	
IMP803 - Die Specifications	35
Application Notes	
AN1 - IMP803 Evaluation Board	37
AN4 - EL Driver Demonstration Boards	45
Package Information	47
Tape and Reel Specifications	48
IMP Sales Offices, Representatives and Distributors	51
Map to IMP - San Jose, CA, USA	56
Quality at IMP - Our Policy	57
Power Management Products	59
μ P Supervisor Products	59-60
USB Power Switches	60
Sample Request Form Last	t Page

IMP Electroluminescent Lamp Drivers

IMP electroluminescent lamp drivers incorporate four EL lamp driving functions on-chip. These are the boost switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. Few external components are needed: one inductor, one diode, one capacitor and two resistors. The resistors allow independent adjustment of boost converter frequency and EL lamp drive frequency. Adjustable lamp drive frequency allows control over lamp color and power dissipation. All devices can be disabled for power saving.

All devices are available in chip form and small MicroSO and SO packages. Tape and reel shipment is available without additional cost.

IMP525: Single Cell Battery Powered Electroluminescent Lamp Driver/Inverter

The IMP525 Electroluminescent (EL) lamp driver is designed for systems that must operate down to 1V and below. The input supply voltage range is 0.9V to 2.5V. Typical output lamp drive voltage is 112V peak-to-peak. EL lamps of up to 6nF capacitance can be driven to high brightness.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to 1µA typical with a V_{DD} of 1.5V. Connecting R_{SW} , the oscillator frequency setting resistor, to ground, can disable the chip. A disable pad, accessible only on the die, can also be used to disable the driver (active low). An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 112V peak-to-peak. This conserves power and extends battery life.

Key Features

- ◆ Wide operating voltage range from 0.9V to 2.5V
- Simple design requires few passive components
- 112V peak-to-peak typical AC output voltage
- Adjustable output frequency controls lamp color and power consumption
- Adjustable converter frequency minimizes circuit power consumption
- Disable mode extends battery life
- Disable current 1µA typical
- Compact MicroSO package and die option
- Same pinout as IMP803

IMP560: Power Efficient EL Lamp Driver

The IMP560 is designed for systems with modest EL lamp drive voltage requirements. It is ideal for low ambient light applications or where small lamps are used. With just one-half the inductor current of the IMP803, the IMP560 reduces system power consumption and extends battery life. Input supply voltage range is 2.0V to 6.5V and quiescent current is a low 420 μ A. Typical EL lamp drive voltage is 120V peak-to-peak.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 120V peak-to-peak. This conserves power and extends battery life.

A disable mode puts the chip into a low current drain mode. With a 3.0V supply, quiescent current drops to 200nA maximum, 50nA typical.

Key Features

- 120V peak-to-peak typical AC output voltage
- Low input current (w/inductor current).....12mA
- Low disabled input current.....50nA
- ♦ Wide operating voltage range from 2.0V to 6.5V
- Simple design requires few passive components
- Adjustable output lamp frequency controls lamp color and power consumption
- Adjustable converter frequency for minimum power consumption
- IMP803 pin compatible
- MicroSO package option

IMP803: High-Voltage EL Lamp Driver

The IMP803 drives EL lamps of up to 30nF capacitance to high brightness. EL lamps with capacitance greater than 30nF can be driven but will be less bright. The typical regulated output voltage that is applied to the EL lamp is 180V peak-to-peak.

The IMP803 operates over a 2.0V to 6.5V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP803. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications. An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 180V peak-to-peak. This conserves power and extends battery life.

Key Features

- ◆ Low Power: 420µA typical V_{DD} current
- Wide operating voltage range from 2.0V to 6.5V
- 180V peak-to-peak typical AC output voltage
- Large output load capability drive lamps with more than 30nF capacitance
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- Device can be Enabled/Disabled
- Low quiescent current 20nA (disabled)
- High-Voltage CMOS Process
- MicroSO package option

Part	Input Voltage Range (V)	Packages	Low Power Disable Mode	Typical Output Voltage (V _{PP})	Adjustable Lamp Drive and Boost Frequency	Regulated Output Voltage
IMP525	0.9 to 2.5	MicroSO & SO	Yes	112	Yes	Yes
IMP527	0.9 to 2.5	MicroSO & SO	Yes	180	Yes	Yes
IMP528	2 to 6.5	MicroSO & SO	Yes	220	Yes	Yes
IMP560	2 to 6.5	MicroSO & SO	Yes	120	Yes	Yes
IMP803	2 to 6.5	MicroSO & SO	Yes	180	Yes	Yes
All devices are	available in die form		•			ELD/B_t06

EL Lamp Driver Product Summary Table

All devices are available in die form.

EL Lamp Driver Development Kits

Several demonstration boards and evaluation kits are available to reduce time-to-market. The kits are available by calling IMP Customer Service at 408.432.9100.

Item	Device/Package	Description	
IMP803EV1	IMP803LG	Evaluation board. Has all components plus battery and lamp.	
IMPxxxDBM	Any MicroSO	Development board. For evaluating IC sample(s) in-circuit.	
IMPxxxDBS	Any SO	Development board. For evaluating IC sample(s) in-circuit.	
IMPELD003	Any SO	Evaluation board with pin jacks for part changes. No R, C, L or battery.	
Note: "xxx" denotes any dri	ver 525 527 528 560 or	803	ELD/B_t05

ote: "xxx" denotes any driver; 525, 527, 528, 560 or 803

Electroluminescent Lamp Applications and Benefits

Liquid Crystal Displays (LCDs) must be lighted for viewing in darkness or low ambient light conditions. Typically, light is projected forward from the back of the LCD display. EL lamps are popular backlights for liquid crystal displays and keypads because EL lamps are flexible, lightweight, thin, vibration and impact resistant, and can be shaped into small, complex or irregular forms. EL lamps evenly light an area without creating "bright-spots".

Since EL lamps typically consume much less current than incandescent bulbs or light emitting diodes (LEDs), their low power consumption, low heat generation and flexibility make them ideal for battery powered portable applications.

EL lamp backlighting applications include: keyless entry systems; audio/video equipment remote controllers; PDA keyboards and displays; timepieces and watches; LCD displays in cellular phones, pagers, and handheld Global Positioning Systems (GPS); face illumination for instrumentation; assistance lighting for buildings; and decorative lighting for sign-displays and merchandising displays.

Typical EL Lamp Applications

Clocks and radios

Portable GPS receivers

Handheld computers

Caller ID

- PDAs
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Tovs
- Automotive displays
- Cellular phones
- Night lights
- Audio and TV remote control units
- Panel meters
- Pagers

EL Driver Product Updates

New product information and application notes can be obtained by visiting the IMP web site at www.impweb.com or by sending email to info@impinc.com.

POWER MANAGEMENT

Single Cell Battery Powered Electroluminescent Lamp Driver/Inverter

The IMP525 is an Electroluminescent (EL) lamp driver designed for systems that must operate down to 1 volt and below. The input supply voltage range is 0.9V to 2.5V. Typical output lamp drive voltage is 112V. All four EL lamp-driving functions are on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6nF capacitance can be driven to high brightness.

The circuit requires few external components; one inductor, one diode, one capacitor and two resistors. The resistors set the frequency for the two oscillators.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to 1 μ A typical with a V_{DD} of 1.5V. The chip can be disabled by connecting R_{SW}, the oscillator frequency setting resistor, to ground. A disable pad (active low), accessible only on the die, can also be used to disable the driver.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 112V peak-to-peak. This conserves power and extends battery life.

The IMP525 is available in MicroSO and SO-8 packages and in die form.

Key Features

- Wide operating voltage range from 0.9V to 2.5V
- Simple design requires few passive components
- ◆ 112V peak-to-peak typical AC output voltage
- Adjustable output frequency controls lamp color and power consumption
- Adjustable converter frequency minimizes circuit power consumption
- Disable mode extends battery life
- Disable current 1µA typical
- Compact MicroSO package option

Applications

- Audio/TV remote control units
- Pagers/Cellular phones
- PDAs
- Clocks and radios
- Portable GPS receivers
- LCD modules
- Toys

Block Diagram

Pin Configuration

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP525EMA	0.9V to 2.5V	YES	-40°C to +85°C	8-MicroSO
IMP525ESA	0.9V to 2.5V	YES	-40°C to +85°C	8-SO
IMP525/D	0.9V to 2.5V	YES	25°C	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, V_{DD} = 1.5V, R_{SW} = 1MΩ, R_{EL} = 1.0MΩ, and T_A = 25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
ON-resistance of MOS Switch	R _{DS(ON)}	I = 50mA			15	Ω
Operating Voltage			0.9		2.5	V
Output Voltage at C _S	V _{CS}	V_{DD} = 1.5V, See Figure 1, Table 1	52	58	65	V
Output Voltage at C _S	V _{CS}	V_{DD} = 0.9V, See Figure 1, Table 2		50		V
Output Voltage Peak-to-Peak	$V_{A}-V_{B}$	V_{DD} = 1.5V, See Figure 1	104	112	124	V _{P-P}
Quiescent V _{DD} Supply Current, Disabled (Disable pin available on die only)	I _{QDIS}	Disable = HIGH		70		nA
Quiescent V _{DD} Supply Current, Disabled	I _{QDIS}	R _{SW-OSC} = GND V _{DD} = 1.5V		1.0	2.0	μΑ
Input Current at V _{DD} Pin	I _{DD}	V _{DD} = 0.9V to 1.5V			1.5	mA
Input Current: IDD Plus Inductor Current	I _{IN}	$V_{DD} = 1.5V$		23	32	mA
V _{A-B} Output Drive Frequency	f _{EL}	V_{DD} = 1.5V, See Figure 1, Table 1		500		Hz
Boost Converter Switching Frequency	f _{SW}	V_{DD} = 1.5V, See Figure 1, Table 1		26		kHz
Switching Duty Cycle	D _{SW}	V_{DD} = 1.5V, See Figure 1		87.5		%
Disable Input LOW Voltage (Disable pin available on die only)	V _{DISL}		GND		0.2	V
Disable Input HIGH Voltage (Disable pin available on die only)	V _{DISH}		V _{DD} -0.5V		V _{DD}	V

Typical Characteristics

MP

EL Lamp Drive Period

Boost Converter Switching Period

Pin Descriptions

Pin Number	Name	Function
1	V _{DD}	Positive voltage supply for the IMP525. Inductor L may be connected here or to a separate supply.
2	R _{SW-OSC}	Switch-mode resistor pin. Switching frequency is determined by external resistor R_{SW} , connected between pin 2 and V_{DD} .
3	Cs	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C_S .
4	L _X	Connection to flyback inductance, L.
5	GND	Ground pin.
6	VB	EL lamp drive. The lamp is connected to a high-voltage bridge circuit with V_B providing the complementary connection to V_A .
7	VA	EL lamp drive. (See above)
8	R _{EL-OSC}	The EL lamp oscillator frequency-setting pin. The frequency is controlled by resistor R_{EL} , connected from pin 8 to V_{DD} .
Disable Pad	DIS	Available only in die form. Setting DIS HIGH disables the chip.

External Components

External Component	Description and Selection Guide
Diode	A fast reverse recovery diode, with BV > 100, such as a 1N4148.
Capacitor C _S	The high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10nF and 100nF is recommended.
Resistor R _{EL}	The EL lamp oscillator frequency-setting resistor. R_{EL} is connected between pin 8 and V_{DD} , providing a frequency inversely proportional to R_{EL} ; as R_{EL} increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 1M Ω resistor between the R_{EL-OSC} pin and the V_{DD} supply results in a lamp frequency around 500Hz.
Resistor R _{SW}	Switching Oscillator frequency-setting resistor. R_{SW} is connected between the R_{SW-OSC} pin and the V_{DD} supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Capacitor C _{SW}	This is an optional noise-suppression capacitor connected from ground to the R _{SW-OSC} pin. A 100pF capacitor is recommended.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_X pin. When the switch opens, the inductor potential will forward-bias the diode and the current will pass through to the storage capacitor C_S , charging it to a high voltage.
	As the value of the inductor is increased, the switching frequency set by R_{SW} should also be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger-area EL lamps must be driven.
	A small electrolytic capacitor (10 μ F, 16V), normally present across the inductor supply V _{IN} , will likely eliminate the need for C _{SW} .

Application Information

Test Circuit

Figure 1 shows the IMP525 configured to drive an EL lamp, represented as a 3nF capacitor.

* Optional

Table 1. $V_{IN} = 1.5V$

Component	Connections	Value	Description
R _{SW}	V _{DD} , R _{SW-OSC}	1MΩ	Boost converter oscillator bias resistor
R _{EL}	V _{DD} , R _{EL-OSC}	1MΩ	EL lamp driver oscillator bias resistor
L	V _{DD} , L _X ²	330μH ²	Boost converter inductor
Cs	C _S , GND	0.1µF/100V	Boost converter storage capacitor
D	L _X , C _S	1N4148	Switching diode
C _{SW}	R _{SW-OSC} , GND	0.1nF	Noise-suppression capacitor

Notes. 2. Murata LQH4N331K04 (8.2Ω max. DCR)

Table 2. $V_{IN} = 0.9V$

Component	Connections	Value	Description
R _{SW}	V _{DD} , R _{SW-OSC}	1.0MΩ	Boost converter oscillator bias resistor
R _{EL}	V _{DD} , R _{EL-OSC}	2.62MΩ	EL lamp driver oscillator bias resistor
L	V _{DD} , L _X ³	680μH ³	Boost converter inductor
Cs	C _S , GND	0.1µF/100V	Boost converter storage capacitor
D	L _X , C _S	1N4148	Switching diode
C _{SW}	R _{SW-OSC} , GND	0.1nF	Noise-suppression capacitor

Notes. 3. Coilcraft DS1608C-684 (2.2Ω max. DCR)

Enable/Disable Operation

Figure 2 shows how the IMP525 can be enabled via a logic gate that connects R_{SW} to $V_{DD},$ and disabled by connecting it to ground.

The IMP525 can also be disabled using a pad on the die. The Disable function pin is not available in packaged parts.

1. Murata part # LQH4N331K04 (DC resistance < 8.2 Ω)

2. Larger values may be required depending upon supply impedance.

* Optional

525_04.eps

Figure 2. Enable/Disable Operation

High Voltages Present

The IMP525 generates high voltages and caution should be exercised.

Inductor Manufacturers

Manufacturer	Series	USA Phone Number
Toko	D52FU	(847) 297-0070
Coilcraft	DS1608, DO1608, DT1608	(847) 639-6400
River Electronics	FLC32	(310) 320-7488
Murata	LQH4N	(800) 831-9172

POWER MANAGEMENT

Single Cell Battery Powered Electroluminescent Lamp Driver/Inverter

The IMP527 is an Electroluminescent (EL) lamp driver designed for systems that must operate down to 1 volt and below. The input supply voltage range is 0.9V to 2.5V. Typical output lamp drive voltage is 180V. All four EL lamp-driving functions are on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6nF capacitance can be driven to high brightness.

The circuit requires few external components; one inductor, one diode, one capacitor and two resistors. The resistors set the frequency for the two oscillators.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to 1 μ A typical with a V_{DD} of 1.5V. The chip can be disabled by connecting R_{SW}, the oscillator frequency setting resistor, to ground. A disable pad (active low), accessible only on the die, can also be used to disable the driver.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 180V peak-to-peak. This conserves power and extends battery life.

The IMP527 is available in MicroSO and SO-8 packages and in die form.

Block Diagram

Key Features

- Wide operating voltage range from 0.9V to 2.5V
- Simple design requires few passive components
- ◆ 180V peak-to-peak typical AC output voltage
- Adjustable output frequency controls lamp color and power consumption
- Adjustable converter frequency minimizes circuit power consumption
- Disable mode extends battery life
- Disable current 1µA typical
- Compact MicroSO package option

Applications

- Audio/TV remote control units
- Pagers/Cellular phones
- PDAs
- Clocks and radios
- Portable GPS receivers
- LCD modules
- ♦ Toys

Pin Configuration

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP527EMA	0.9V to 2.5V	YES	-40°C to +85°C	8-MicroSO
IMP527ESA	0.9V to 2.5V	YES	-40°C to +85°C	8-SO
IMP527/D	0.9V to 2.5V	YES	25°C	Dice

Absolute Maximum Ratings

Supply Voltage, V_{DD} , $V_{RSW-OSC}$ and $V_{REL-OSC}$ – 0.5V to +3.5V
Storage Temperature Range65°C to +150°C
Power Dissipation (SO package) 400mW
Power Dissipation (MicroSO package) 300mW

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted,	$V_{DD} = 1.5 V R_{CW} =$	$1MO R_{PT} = 1MO$	and $T_{\Lambda} = 25^{\circ}C$
Unless otherwise noted,	$\mathbf{v}_{\text{DD}} = 1.3 \mathbf{v}, \mathbf{K}_{\text{SW}} =$	$110152, R_{EL} = 110152$, and $I_A = 25$ C.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
ON-resistance of MOS Switch	R _{DS(ON)}	I = 50mA			15	Ω
Operating Voltage			0.9		2.5	V
Output Voltage at C _S	V _{CS}	V_{DD} = 1.5V, See Figure 1, Table 1	80	90		V
Output Voltage at C _S	V _{CS}	V_{DD} = 0.9V, See Figure 1, Table 2		50		V
Output Voltage Peak-to-Peak	$V_{A}-V_{B}$	V_{DD} = 1.5V, See Figure 1		180		V _{P-P}
Quiescent V _{DD} Supply Current, Disabled (Disable pin available on die only)	I _{QDIS}	Disable = HIGH		70		nA
Quiescent V _{DD} Supply Current, Disabled	I _{QDIS}	R _{SW-OSC} = GND V _{DD} = 1.5V		1.0	2.0	μA
Input Current at V _{DD} Pin	I _{DD}	$V_{DD} = 0.9V$ to 1.5V			1.5	mA
Input Current: IDD Plus Inductor Current	I _{IN}	V_{DD} = 1.5V, See Figure 1, Table 1		26	32	mA
V _{A-B} Output Drive Frequency	f _{EL}	V_{DD} = 1.5V, See Figure 1, Table 1		500		Hz
Boost Converter Switching Frequency	f _{SW}	V_{DD} = 1.5V, See Figure 1, Table 1		26		kHz
Switching Duty Cycle	D _{SW}	V_{DD} = 1.5V, See Figure 1		87.5		%
Disable Input LOW Voltage	V _{DISL}		GND		0.2	V
(Disable pin available on die only)						
Disable Input HIGH Voltage (Disable pin available on die only)	V _{DISH}		V _{DD} -0.5V		V _{DD}	V

Typical Characteristics

MP

EL Lamp Drive Period

Boost Converter Switching Period

Pin Descriptions

Pin Number	Name	Function
1	V _{DD}	Positive voltage supply for the IMP527. Inductor L may be connected here or to a separate supply.
2	R _{SW-OSC}	Switch-mode resistor pin. Switching frequency is determined by external resistor R_{SW} , connected between pin 2 and V_{DD} .
3	Cs	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C_S .
4	L _X	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V _B	EL lamp drive. The lamp is connected to a high-voltage bridge circuit with V_B providing the complementary connection to V_A .
7	VA	EL lamp drive. (See above)
8	R _{EL-OSC}	The EL lamp oscillator frequency-setting pin. The frequency is controlled by resistor $R_{\text{EL}},$ connected from pin 8 to $V_{\text{DD}}.$
Disable Pad	DIS	Available only in die form. Setting DIS HIGH disables the chip.

External Components

External Component	Description and Selection Guide
Diode	A fast reverse recovery diode, with BV > 100, such as a 1N4148.
Capacitor C _S	The high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10nF and 100nF is recommended.
Resistor R _{EL}	The EL lamp oscillator frequency-setting resistor. R_{EL} is connected between pin 8 and V_{DD} , providing a frequency inversely proportional to R_{EL} ; as R_{EL} increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 1M Ω resistor between the R_{EL-OSC} pin and the V_{DD} supply results in a lamp frequency around 500Hz.
Resistor R _{SW}	Switching Oscillator frequency-setting resistor. R_{SW} is connected between the R_{SW-OSC} pin and the V_{DD} supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Capacitor C _{SW}	This is an optional noise-suppression capacitor connected from ground to the R _{SW-OSC} pin. A 100pF capacitor is recommended.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_X pin. When the switch opens, the inductor potential will forward-bias the diode and the current will pass through to the storage capacitor C_S , charging it to a high voltage.
	As the value of the inductor is increased, the switching frequency set by R _{SW} should also be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger-area EL lamps must be driven.
	A small electrolytic capacitor (10 μ F, 16V), normally present across the inductor supply V _{IN} , will likely eliminate the need for C _{SW} .

IMP527

Application Information

Test Circuit

Figure 1 shows the IMP527 configured to drive an EL lamp, represented as a 3nF capacitor.

* Optional

Figure 1. Test Circuit

Table 1. $V_{IN} = 1.5V$

Component	Connections	Value	Description
R _{SW}	V _{DD} , R _{SW-OSC}	1MΩ	Boost converter oscillator bias resistor
R _{EL}	V _{DD} , R _{EL-OSC}	1MΩ	EL lamp driver oscillator bias resistor
L	V _{DD} , L _X ²	330μH ²	Boost converter inductor
Cs	C _S , GND	0.1µF/100V	Boost converter storage capacitor
D	L _X , C _S	1N4148	Switching diode
C _{SW}	R _{SW-OSC} , GND	0.1nF	Noise-suppression capacitor (optional)

Notes. 2. Murata LQH4N331K04 (8.2Ω max. DCR)

Table 2. $V_{IN} = 0.9V$

Component	Connections	Value	Description
R _{SW}	V _{DD} , R _{SW-OSC}	1MΩ	Boost converter oscillator bias resistor
R _{EL}	V _{DD} , R _{EL-OSC}	2.62MΩ	EL lamp driver oscillator bias resistor
L	V _{DD} , L _X ³	680μH ³	Boost converter inductor
Cs	C _S , GND	0.1µF/100V	Boost converter storage capacitor
D	L _X , C _S	1N4148	Switching diode
C _{SW}	R _{SW-OSC} , GND	0.1nF	Noise-suppression capacitor (optional)

Notes. 3. Coilcraft DS1608C-684 (2.2\Omega max. DCR)

Enable/Disable Operation

Figure 2 shows how the IMP527 can be enabled via a logic gate that connects R_{SW} to V_{DD} , and disabled by connecting it to ground.

The IMP527 can also be disabled using a pad on the die. The Disable function pin is not available in packaged parts.

1. Murata part # LQH4N331K04 (DC resistance < 8.2 Ω)

2. Larger values may be required depending upon supply impedance.

* Optional

527_04.eps

Figure 2. Enable/Disable Operation

High Voltages Present

The IMP527 generates high voltages and caution should be exercised.

Inductor Manufacturers

Manufacturer	Series	USA Phone Number
Toko	D52FU	(847) 297-0070
Coilcraft	DS1608, DO1608, DT1608	(847) 639-6400
River Electronics	FLC32	(310) 320-7488
Murata	LQH4N	(800) 831-9172

POWER MANAGEMENT

High-Voltage EL Lamp Driver

– 220 V_{PP} Drive

The IMP528 is an Electroluminescent (EL) lamp driver with the four EL lamp driving functions on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. The IMP528 drives EL lamps of up to 50nF capacitance to high brightness; EL lamps with capacitances greater than 50nF can be driven, but will be lower in light output. The typical regulated output voltage that is applied to the EL lamp is 220V peak-topeak. The circuit requires few external components; a single inductor, single diode, two capacitors and three resistors. Two of these resistors set the frequency for two internal oscillators.

Unlike other EL lamp drivers, the IMP528 does not require an external protection resistor in series with the EL lamp.

The IMP528 operates over a 2.0V to 6.5V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP528. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications.

An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 220V peak-to-peak. This conserves power and extends battery life.

The IMP528 is available in MicroSO and SO-8 packages and in die or wafer form.

Key Features

- 220V peak-to-peak typical AC output voltage
- ◆ Low Power: 420µA typical V_{DD} current
- Wide operating voltage range-from 2.0V to 6.5V
- Large output load capability drives lamps with more than 50nF capacitance
- Eliminates external protection resistor in series with EL lamp
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- High-Voltage CMOS Process
- MicroSO package option

Applications

- GPS units/Pagers/Cellular phones
- PDAs/Handheld computers
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- ♦ Toys

Block Diagram

Pin Configuration

Pin Compatible With IMP803 and IMP560

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP528ESA	2.0V to 6.5V	Yes	-40°C to +85°C	8-SO
IMP528EMA	2.0V to 6.5V	Yes	-40°C to +85°C	8-MicroSO
IMP528/D	2.0V to 6.5V	Yes	25°C	Dice
IMP528/D1	2.0V to 6.5V	Yes	25°C	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

V _{DD} 0.5V to +7.0V
$V_{RSW\text{-}OSC}$ and $V_{REL\text{-}OSC}$
V _{CS} , L _X
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Power Dissipation (SO) 400mW
Power Dissipation (MicroSO) 300mW
V_A,V_B $\ldots\ldots\ldots$ –0.5V to V_{CS} (pin 3)

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, V_{DD} = 3.0V, R_{SW} = 910k\Omega, R_{EL} = 2.7MQ, and T_A = 25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
ON-resistance of MOS Switch	R _{DS(ON)}	I = 100mA		3.0	8	Ω
Output Voltage Regulation	V _{CS}	V _{DD} = 2.0 to 6.5V		110		V
Output Voltage Peak-to-peak (in regulation)	$V_{A}-V_{B}$	V _{DD} = 2.0 to 6.5V		220		V
Input Current at V _{DD} Pin	I _{DD}	V _{DD} = 3.0V, See Figure 1		420	700	μA
Input Current at V _{DD} Pin	I _{DD}	$V_{DD} = 5.0 V$		500	750	μA
Quiescent V _{DD} Supply Current, Disabled	I _{DDQ}	V _{RSW-OSC} <100mV		20	200	nA
Input Current: IDD Plus Inductor Current	I _{IN}	V _{DD} = 3.0V, See Figure 1		21	31	mA
Output Voltage at V _{CS}	V _{CS}	V _{DD} = 3.0V, See Figure 1		110		V
V _{A-B} Output Drive Frequency	f _{EL}	V _{DD} = 3.0V, See Figure 1		250		Hz
Switching Frequency	f _{SW}	V _{DD} = 3.0V, See Figure 1		61		kHz
Switching Duty Cycle	D _{SW}	V _{DD} = 3.0V, See Figure 1		88		%

Pin Descriptions

Pin Number	Name	Function
1	V _{DD}	Positive voltage supply for the IMP528. Inductor L may be connected here or to a separate unregulated supply.
2	R _{SW-OSC}	Switch-mode resistor pin. Switching frequency is determined by an external resistor, R _{SW} .
3	Cs	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at $\ensuremath{C_{S}}$.
4	L _X	Connection to flyback inductance, L.
5	GND	Ground pin.
6	VB	EL lamp drive. The lamp is connected in a high-voltage bridge circuit with V_B providing the complementary connection to V_A . The peak-to-peak AC voltage across the EL lamp is thus two times V_{CS} .
7	VA	EL lamp drive. (See above)
8	R _{EL-OSC}	The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor R_{EL} .

External Components

External Component	Description and Selection Guide
Diode	Catch diode. A fast reverse recovery diode, with BV > 150V, such as an FDLL400 (150V).
Capacitor C _S	This is the high voltage capacitor that stores the inductive energy transferred through the catch diode. A capacitor with WV > 120V between 10nF and 100nF is recommended.
Resistor R _{EL}	The EL lamp oscillator frequency setting resistor. This resistor, connected between the R_{EL-OSC} pin and V_{DD} , provides an oscillator frequency inversely proportional to R_{EL} ; as R_{EL} increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 2.7M Ω resistor between the R_{EL-OSC} pin and the V_{DD} supply results in a lamp frequency around 250Hz.
Resistor R _{SW}	Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the R_{SW-OSC} pin and the V_{DD} supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_X pin. When this internal switch opens, the inductor potential will forward-bias the catch diode and the current will pass through the storage capacitor C_S , charging it to a high voltage.
	Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by R _{SW} should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.

528 03.eps

Application Information

Test and Application Circuit, 3.0V

Figure 1 shows the IMP528 configured to drive an EL lamp with a 3.0V input.

2.7MΩ

2. Larger values may be required depending upon supply impedance.

3. EN is connected to V_{DD} to enable and to GND to disable.

Figure 1. 3.0V Application

Dual Supply Operation with 1.5V Battery

The IMP528 can also be operate from a single battery cell when a regulated voltage higher than 2.0V is also available. This dual supply configuration, shown in *Figure 2*, uses the regulated voltage to operate the IMP528 while the energy for the high-voltage boost circuit comes from the battery.

Regulated Voltage (2.0V to 6.5V)

Switch Resistance

The IMP528 inductor switch resistance is typically below 3.5 Ω , as shown in *Figure 3*.

High-Voltages Present

The IMP528 generates high voltages and caution should be exercised.

Figure 3. Boost Switch ON-Resistance

POWER MANAGEMENT

Power Efficient EL Lamp Driver

The IMP560 is an Electroluminescent (EL) lamp driver designed for systems with low EL lamp drive voltage requirements. It is ideal for low ambient light applications or where small lamps are used. With just one-half the inductor current of the IMP803, the IMP560 reduces system power consumption and extends battery life. Input supply voltage range is 2.0V to 6.5V and quiescent current is a low 420 μ A. Typical EL lamp drive voltage is ±56V.

All four EL lamp-driving functions are on-chip. These are the switchmode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6nF capacitance can be driven to high brightness.

The circuit requires few external components; a single inductor, a single diode, two capacitors and three resistors. Two of these resistors set the frequencies for two internal oscillators. An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 120V peak-to-peak. This conserves power and extends battery life.

A disable mode puts the chip into a low current drain mode. With a 3.0V supply, quiescent current drops to 200nA maximum, 50nA typical. The chip is disabled by connecting the oscillator frequency setting resistor R_{SW} to ground.

The IMP560 is available in MicroSO and SO-8 packages and in die or wafer form.

Key Features

- ◆ 112V peak-to-peak typical AC output voltage
- Low input current (w/inductor current).....12mA
- Low disabled input current.....50nA
- ♦ Wide operating voltage range from 2.0V to 6.5V
- Simple design requires few passive components
- Adjustable output lamp frequency controls lamp color and power consumption
- Adjustable converter frequency for minimum power consumption
- ◆ IMP803 pin-compatible
- MicroSO package option

Applications

- Night lights
- Automotive displays
- Cellular phones
- Pagers
- Clocks and radios
- Portable GPS receivers
- LCD module backlights

Block Diagram

Pin Configuration

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP560EMA	2.0V to 6.5V	YES	-40°C to +85°C	8-MicroSO
IMP560ESA	2.0V to 6.5V	YES	-40°C to +85°C	8-SO
IMP560/D	2.0V to 6.5V	YES	25°C	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

Supply Voltage, V_{DD} , $V_{RSW-OSC}$ and $V_{REL-OSC}$ –0.5V to +7.0V
Output Voltage, V _{CS} 0.5V to +120V
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Power Dissipation (SO) 400mW
Power Dissipation (MicroSO)

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, V_{DD} = 3.0V, R_{SW} = 750k\Omega, R_{EL} = 2.0MΩ, and T_A = 25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
ON-resistance of MOS Switch	R _{DS(ON)}	I = 100mA		3.5	8	Ω
Output Voltage Regulation	V _{CS}	V _{DD} = 2.0 to 6.5V	52	56	65	V
Output Voltage Peak-to-peak (in regulation)	$V_{A}-V_{B}$	V _{DD} = 2.0 to 6.5V	104	112	120	V
Quiescent V _{DD} Supply Current, Disabled	I _{DDIS}	V _{RSW-OSC} <100mV		50	200	nA
Input Current at V _{DD} Pin	I _{DD}	V _{DD} = 3.0V, See Figure 1		470	700	μA
Input Current at V _{DD} Pin	I _{DD}	V_{DD} = 5.0V, See Figure 2		500	750	μA
Input Current: IDD Plus Inductor Current	I _{IN}	V_{DD} = 3.0V, See Figure 1		12		mA
V _{A-B} Output Drive Frequency	f _{EL}	V _{DD} = 3.0V, See Figure 1	300	370	430	Hz
Switching Frequency	f _{SW}	V_{DD} = 3.0V, See Figure 1	50	70	90	kHz
Switching Duty Cycle	D _{SW}	V _{DD} = 3.0V, See Figure 1		88		%

Pin Descriptions

Pin Number	Name	Function
1	V _{DD}	Positive voltage supply for the IMP560. Inductor L may be connected here or to a separate unregulated supply.
2	R _{SW-OSC}	Switch-mode resistor pin. Switching frequency is determined by an external resistor, R _{SW} .
3	Cs	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at $\rm C_S.$
4	L _X	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V _B	EL lamp drive. The lamp is connected in a high-voltage bridge circuit with V_B providing the complementary connection to V_A . The peak-to-peak AC voltage across the EL lamp is thus two times V_{CS} .
7	VA	EL lamp drive. (See above)
8	R _{EL-OSC}	The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor R_{EL} .

External Components

External Component	Description and Selection Guide
Diode	A fast reverse recovery diode, with BV > 100, such as a 1N4148.
Capacitor C _S	This is the high voltage capacitor that stores the inductive energy transferred through the diode. A 100 volt capacitor between 10nF and 100nF is recommended.
Resistor R _{EL}	The EL lamp oscillator frequency setting resistor. This resistor, connected between the R_{EL-OSC} pin and ground, provides an oscillator frequency inversely proportional to R_{EL} ; as R_{EL} increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 2M Ω resistor between the R_{EL-OSC} pin and the V_{DD} supply results in a lamp frequency around 350Hz: a 1M Ω resistor will give \approx 700Hz.
Resistor R _{SW}	Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the R_{SW-OSC} pin and the V_{DD} supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_X pin. When this internal switch opens, the inductor potential will forward-bias the diode and the current will pass through the storage capacitor C_S , charging it to a high voltage.
	Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by R _{SW} should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.

The IMP560 generates high voltages and caution should be exercised.

Application Information

Test and Application Circuit, 5.0V

Figure 2 shows a 5.0V input application driving a 6-square-inch EL lamp.

1. Murata part # LQH4N561K04 (DC resistance <14.5 Ω)

Test and Application Circuit, 3.0V

EL lamp, represented as a 10nF capacitor.

Figure 1 shows the IMP560 configured to drive a 3-square-inch

2. Larger values may be required depending upon supply impedance.

1. Murata part # LQH4N561K04 (DC resistance <14.5Ω)

2. Larger values may be required depending upon supply impedance.

560_10.eps

Figure 2. 5.0V Application

Enable/Disable Operation

Figure 3 shows the IMP560 can be enabled via a logic gate that connects R_{SW} to V_{DD} , and disabled by connecting it to ground. R_{EL} may be connected either to V_{DD} or to the gate.

Enable/Disable Table			
R _{SW} Connection IMP560 State			
V _{DD}	Enabled		
Ground	Disabled		

2. Larger values may be required depending upon supply impedance.

560_11.eps

Figure 3. Enable/Disable Operation

Dual Supply Operation with 1.5V Battery

The IMP560 can also be operate from a single battery cell when a regulated voltage higher than 2.0V is also available. The dual supply configuration, shown in *Figure 4*, uses the regulated voltage to operate the IMP560 while the energy for the high-voltage boost circuit comes from the battery. The current to run the internal logic is typically 420μ A.

The circuit of *Figure 4* can also be used with batteries that exceed 6.0V as long as V_{DD} does not exceed 6.5V.

Figure 4. Dual Supply Operation with High Battery Voltages

POWER MANAGEMENT

High-Voltage EL Lamp Driver

The IMP803 is an Electroluminescent (EL) lamp driver with the four EL lamp driving functions on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. The IMP803 drives EL lamps of up to 30nF capacitance to high brightness; EL lamps with capacitances greater than 30nF can be driven, but will be lower in light output. The typical regulated output voltage that is applied to the EL lamp is 180V peak-topeak. The circuit requires few external components, a single inductor, single diode, two capacitors and three resistors. Two of these resistors set the frequency for two internal oscillators.

The IMP803 operates over a 2.0V to 6.5V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP803. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications.

An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 180V peak-to-peak. This conserves power and extends battery life.

The IMP803 is available in MicroSO and SO-8 packages and in die or wafer form.

Key Features

- Low Power: 420µA typical V_{DD} current
- Wide operating voltage range from 2.0V to 6.5V
- ◆ 180V peak-to-peak typical AC output voltage
- Large output load capability drive lamps with more than 30nF capacitance
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- Device can be Enabled/Disabled
- Low quiescent current 20nA (disabled)
- High-Voltage CMOS Process
- MicroSO package option

Applications

- GPS units/Pagers/Cellular phones
- PDAs/Handheld computers
- ♦ Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Toys

Block Diagram

Pin Configuration

Pin Compatible With HV803 and IMP560

Ordering Information

Part Number	Input Voltage	Regulated Output Voltage	Temperature Range	Pins-Package
IMP803LG	2.0V to 6.5V	Yes	-40°C to +85°C	8-SO
IMP803IMA	2.0V to 6.5V	Yes	-40°C to +85°C	8-MicroSO
IMP803SX	2.0V to 6.5V	Yes	25°C	Dice

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

V_{DD} , $V_{RSW-OSC}$ and $V_{REL-OSC}$
V_{CS},L_X
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Power Dissipation (SO) 400mW
Power Dissipation (MicroSO)
$V_{\text{A}}, V_{\text{B}}$ 0.5V to V_{CS} (pin 3)

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, V_{DD} = 3.0V, R_{SW} = 750k Ω , R_{EL} = 2.0M Ω , and T_A = 25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
ON-resistance of MOS Switch	R _{DS(ON)}	I = 100mA		3.5	8	Ω
Output Voltage Regulation	V _{CS}	V _{DD} = 2.0 to 6.5V	80	90	100	V
Output Voltage Peak-to-peak (in regulation)	VA-VB	V _{DD} = 2.0 to 6.5V	160	180	200	V
Quiescent V _{DD} Supply Current, Disabled	I _{DDQ}	V _{RSW-OSC} <100mV		20	200	nA
Input Current at V _{DD} Pin	I _{DD}	V _{DD} = 3.0V, See Figure 1		420	700	μA
Input Current at V _{DD} Pin	I _{DD}	V _{DD} = 5.0V, See Figure 2		500	750	μA
Input Current: IDD Plus Inductor Current	I _{IN}	V _{DD} = 3.0V, See Figure 1		20	31	mA
Output Voltage at V _{CS}	V _{CS}	V _{DD} = 3.0V, See Figure 1	60	74	100	V
V _{A-B} Output Drive Frequency	f _{EL}	V _{DD} = 3.0V, See Figure 1	300	370	430	Hz
Switching Frequency	f _{SW}	V _{DD} = 3.0V, See Figure 1	50	70	90	kHz
Switching Duty Cycle	D _{SW}	V _{DD} = 3.0V, See Figure 1		88		%

Pin Descriptions

Pin Number	Name	Function
1	V _{DD}	Positive voltage supply for the IMP803. Inductor L may be connected here or to a separate unregulated supply.
2	R _{SW-OSC}	Switch-mode resistor pin. Switching frequency is determined by an external resistor, R _{SW} .
3	Cs	Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at $\ensuremath{C_{S}}$.
4	L _X	Connection to flyback inductance, L.
5	GND	Ground pin.
6	V _B	EL lamp drive. The lamp is connected in a high-voltage bridge circuit with V_B providing the complementary connection to V_A . The peak-to-peak AC voltage across the EL lamp is thus two times V_{CS} .
7	VA	EL lamp drive. (See above)
8	R _{EL-OSC}	The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor R_{EL} .

External Components

External Component	Description and Selection Guide
Diode	Catch diode. A fast reverse recovery diode, with BV > 100, such as a 1N4148.
Capacitor C _S	This is the high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10nF and 100nF is recommended.
Resistor R _{EL}	The EL lamp oscillator frequency setting resistor. This resistor, connected between the R_{EL-OSC} pin and V_{DD} , provides an oscillator frequency inversely proportional to R_{EL} ; as R_{EL} increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 2M Ω resistor between the R_{EL-OSC} pin and the V_{DD} supply results in a lamp frequency around 350Hz: a 1M Ω resistor will give \approx 700Hz.
Resistor R _{SW}	Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the R_{SW-OSC} pin and the V_{DD} supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.
Inductor L	The inductor provides the voltage boost needed by means of inductive "flyback". The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L_X pin. When this internal switch opens, the inductor potential will forward-bias the catch diode and the current will pass through the storage capacitor C_S , charging it to a high voltage.
	Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by R_{SW} should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.
Lamp, R _{CL}	An external resistor (R _{CL}) in series with the lamp will protect the output drivers from high transient currents during lamp commutation.

Application Information

Test and Application Circuit, 3.0V

Figure 1 shows the IMP803 configured to drive a 3-square-inch EL lamp, represented as a 10nF capacitor. With a 3.0V input, the EL lamp will be driven to moderate brightness.

Figure 1. 3.0V Application

Test and Application Circuit, 5.0V

Figure 2 shows a 5.0V input application driving a 6-square-inch EL lamp.

1. Murata part # LQH4N561K04 (DC resistance <14.5 Ω)

2. Larger values may be required depending upon supply impedance.

803_10.eps

Figure 2. 5.0V Application

Test and Application Circut, 6.0V

At higher input voltage levels, the IMP803 will drive large EL lamps. *Figure 3* shows a 6.0V circuit configuration that will drive a 10 square-inch lamp.

2. Larger values may be required depending upon supply impedance.

Figure 3. 6.0V Application

Enable/Disable Operation

Figure 4 shows that the IMP803 can be enabled via a logic gate that connects R_{SW} to $V_{DD}\!$, and disabled by connecting it to ground.

Enable/Disable Table				
R _{SW} Connection	IMP803 State			
V _{DD}	Enabled			
GND	Disabled			

1. Murata part # LQH4N561K04 (DC resistance <14.5 Ω)

2. Larger values may be required depending upon supply impedance.

803_12.eps

803_11.eps

Figure 4. Enable/Disable Operation

Dual Supply Operation with 1.5V Battery

The IMP803 can also be operate from a single battery cell when a regulated voltage higher than 2.0V is also available. This dual supply configuration, shown in *Figure 5*, uses the regulated voltage to operate the IMP803 while the energy for the high-voltage boost circuit comes from the battery.

The circuit of *Figure 5* thus allows operation with batteries that are below the 2V minimum specification or above the 6.0V maximum operating voltage.

Figure 5. Dual Supply Operation

Switch Resistance

The IMP803 inductor switch resistance is typically below 3.5 Ω , as shown in *Figure 6*.

Figure 6. Boost Switch On Resistance

High-Voltages Present

The IMP803 generates high voltages and caution should be exercised.

IMP525 Single Cell Battery Powered EL Lamp Driver

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	1.0 mil (25 microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, 1/2% Copper
Bond Pad Size:	100 microns per side
Die Size:	1.35mm x 1.54mm

Pad Description

Pad		
Number	Name	Function
1	V _{DD}	Positive voltage supply.
2	R _{SW-OSC}	Switch-mode oscillator frequency setting pad.
3	Cs	Boost converter storage capacitor pad.
4	L _X	Inductor pad.
5	GND	Ground pad.
6	VB	EL lamp drive.
7	VA	EL lamp drive.
8	R _{EL-OSC}	EL lamp oscillator frequency setting pad.
9*	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location¹

Pad Number	X (microns)	Y (microns)
1	1153	1092
2	476	1226
3	314	1226
4	143	1216
5	111	460
6	397	112
7	1104	112
8	1153	958
9	1153	1226

Notes 1. To bonding pad center

Ordering Information

		Description		
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active	
IMP525/D	9		•	
IMP525/D1	9	•		

525 Die_t01

IMP527 Single Cell Battery Powered EL Lamp Driver, 180V_{PP} Drive

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	1.0 mil (25 microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, 1/2% Copper
Bond Pad Size:	100 microns per side
Die Size:	1.35mm x 1.54mm

Pad Description

Pad		
Number	Name	Function
1	V _{DD}	Positive voltage supply.
2	R _{SW-OSC}	Switch-mode oscillator frequency setting pad.
3	Cs	Boost converter storage capacitor pad.
4	L _X	Inductor pad.
5	GND	Ground pad.
6	VB	EL lamp drive.
7	VA	EL lamp drive.
8	R _{EL-OSC}	EL lamp oscillator frequency setting pad.
9*	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location¹

Pad		
Number	X (microns)	Y (microns)
1	1153	1092
2	476	1226
3	314	1226
4	143	1216
5	111	460
6	397	112
7	1104	112
8	1153	958
9	1153	1226

Notes 1. To bonding pad center

Ordering Information

	Disable	Description	
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active
IMP527/D	9		•
IMP527/D1	9	•	

527 Die_t01

IMP528 High-Voltage EL Lamp Driver, 220V_{PP} Drive

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	1.0 mil (25 microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, 1/2% Copper
Bond Pad Size:	100 microns per side
Die Size:	1.38mm x 1.82mm

Pad Description

Pad		
Number	Name	Function
1	V _{DD}	Positive voltage supply.
2	R _{SW-OSC}	Switch-mode oscillator frequency setting pad.
3	Cs	Boost converter storage capacitor pad.
4	L _X	Inductor pad.
5	GND	Ground pad.
6	V _B	EL lamp drive.
7	VA	EL lamp drive.
8	R _{EL-OSC}	EL lamp oscillator frequency setting pad.
9	GND	Ground pad.
10*	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location¹

Pad Number	V (mionorg)	V (mianana)
number	X (microns)	Y (microns)
1	152	1480
2	152	1253.5
3	152	387.75
4	152	122.5
5	1198.5	140
6	1215	395
7	1215	1208.5
8	1234	1508.5
9	998	122.5
10	382	1553.5

Notes 1. To bonding pad center

Ordering Information

	Disable	Description	
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active
IMP528/D	10		•
IMP528/D1	10	•	

IMP560 - Die Specifications

POWER MANAGEMENT

IMP560 Power Efficient EL Lamp Driver

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	1.0 mil (25 microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, 1/2% Copper
Bond Pad Size:	100 microns per side
Die Size:	1.38mm x 1.82mm

Pad Description

Name	Function
V_{DD}	Positive voltage supply.
R _{SW-OSC}	Switch-mode oscillator frequency setting pad.
Cs	Boost converter storage capacitor pad.
L _X	Inductor pad.
GND	Ground pad.
VB	EL lamp drive.
VA	EL lamp drive.
R _{EL-OSC}	EL lamp oscillator frequency setting pad.
GND	Ground pad.
DIS	Disable pad. DIS = HIGH disables chip.
	V _{DD} R _{SW-OSC} C _S L _X GND V _B V _A R _{EL-OSC} GND

See Ordering Information table

Pad Location¹

Pad		
Number	X (microns)	Y (microns)
1	152	1480
2	152	1253.5
3	152	387.75
4	152	122.5
5	1198.5	140
6	1215	395
7	1215	1208.5
8	1234	1508.5
9	998	122.5
10	382	1553.5

Notes 1. To bonding pad center

Ordering Information

		Descr	iption
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active
IMP560/D	10		•
IMP560/D1	10	•	

IMP803 High-Voltage EL Lamp Driver

General Information

Die Thickness:	25 mils (625 microns)
Bond Wire Size:	1.0 mil (25 microns)
Back Side Metal:	None
Back Side Potential:	Ground
Die Attach Method:	Conductive Adhesive
Bond Pad Metal:	Aluminum, 1% Silicon, 1/2% Copper
Bond Pad Size:	100 microns per side
Die Size:	1.38mm x 1.82mm

Pad Description

Pad		
Number	Name	Function
1	V _{DD}	Positive voltage supply.
2	R _{SW-OSC}	Switch-mode oscillator frequency setting pad.
3	Cs	Boost converter storage capacitor pad.
4	L _X	Inductor pad.
5	GND	Ground pad.
6	VB	EL lamp drive.
7	VA	EL lamp drive.
8	R _{EL-OSC}	EL lamp oscillator frequency setting pad.
9	GND	Ground pad.
10*	DIS	Disable pad. DIS = HIGH disables chip.

* See Ordering Information table

Pad Location¹

Pad Number	V (V (
number	X (microns)	Y (microns)		
1	152	1480		
2	152	1253.5		
3	152	387.75		
4	152	122.5		
5	1198.5	140		
6	6 1215 395			
7	1215	1208.5		
8	1234	1508.5		
9	998	122.5		
10	382	1553.5		

Notes 1. To bonding pad center

Ordering Information

		Descr	iption
Part Number	Pad Number	Disable Pad Active	Disable Pad Not Active
IMP803SX	10		•
IMP803/D1	10	•	

803 Die_t01

Notes

Pro	oject			·							
											-
											-
											-

Application Note 1

POWER MANAGEMENT

EL DRIVER AN-1

Electroluminescent Lamp Driver Evaluation Board

Introduction

This Application Note introduces an Evaluation Board for IMP EL driver ICs. It is supplied with the IMP803 but can also be used with the IMP560 and IMP525: all 3 have identical pinouts.

EL Lamps and Drivers

An electroluminescent (EL) lamp consists of a phosphor coating on a dielectric that is sandwiched between two conductors. Electrically, it looks like a capacitor. Such a lamp requires drive from a high alternating voltage source in order to emit light. This can be obtained from IMP integrated circuits IMP803, IMP560 and IMP525 that convert low voltages into appropriate high-voltage waveforms.

Small EL lamps exhibit about 2 to $6nF/in^2$. IMP Driver ICs are capable of powering EL lamps that have total equivalent load capacitances up to 30nF, so this works out to a maximum of around 15 square inches. "Powering" in this context means enabling enough light for the application, which can range from LCD backlights (relatively bright in a handheld device) to pagers (medium-bright, in a poorly-lit room), to night-lights (faint, in a dark room).

IMP Driver IC System Diagram

As shown in *Figure 1*, these ICs contain a high-voltage MOSFET switch, an output H-bridge, and oscillators to drive each. The switch, combined with an external inductor and diode, form a step-up (boost) converter that transforms the input voltage to 45-90 volts across capacitor C_S . This, in turn, is switched from one side of the load (the EL lamp) to the other by a commutating bridge, driven by its own oscillator. This action causes the lamp to experience twice the C_S value (i.e. 90-180 volts peak-to-peak) with no DC component.

A typical application uses a switch frequency of 80kHz and bridge commutation frequency of 360Hz. These frequencies are controllable via external resistors; R_{SW} for the boost converter and R_{EL} for the output driver. R_{EL} influences brightness, color and EL lamp life. R_{SW} controls converter efficiency. Both affect power consumption.

IMP Driver IC System Diagram

Figure 1. Circuitry in gray is on-chip.

Driver Variations

The IMP803, 560 and 525 have an internal regulating circuit (see *Figure 2*), that is useful where V_{IN} is expected to change considerably, as with an aging battery: as V_{IN} falls, V_{OUT} (and brightness) will remain substantially unaffected.

Table 1 is a general comparison of IMP EL Lamp drivers. It facilitates choices based on number of batteries, size of display, and regulation. Required display brightness will also need to be factored into the choice.

Table 1. General Characteristics of IMP EL Lamp Drivers

Device	V _{IN}	V _{OUT}	Regulated Output	Max. Switch R(on)
IMP803	2.4 - 6.5V	180V _{PP}	Yes	8Ω
IMP560	2.4 - 6.5V	120V _{PP}	Yes	8Ω
IMP525	0.9 – 2.5V	112V _{PP}	Yes	15Ω
				AN01.t01

Figure 2. Block Diagram for IMP circuits. Dotted components are equivalent to regulation circuitry (see text).

Basic Circuit, Plus Variations

In normal operation, V_{DD} is one or two 1.5V cells and L1 is a tiny ferrite-bobbin inductor. R_{SW} and R_{EL} control their respective oscillators. If a logic-controllable shutdown is desired, R_{SW} may be switched between V_{DD} and GND (I_{DDQ} = 1 μA max.). Conversely, if shutdown is via V_{DD} , R_{SW} should then be connected to V_{DD} as shown by the dotted line in *Figure 3*.

 R_{CL} is included to protect the bridge against peak currents during commutation. A value of 500Ω to $2k\Omega$ is suitable.

In use, the inductor current can reach several tens of milliamperes, so in single-battery applications it is recommended that the low-current shutdown capability of the driver IC be utilized. This is done by connecting R_{SW} (point A on the schematics) to either $V_{\rm DD}$ (ON) or GND (OFF). With power source(s) connected, shutdown (standby) current is typically much lower than $1\mu A.$

Figure 3. Basic EL Lamp Driver.

Reducing Component Count

Having said that keeping R_{CL} is a good idea, it is true that removing as many components as possible may also be desirable. For the IMP803, R_{EL} and R_{SW} may be combined as shown in *Figure 4*. Varying R_{EL} causes a visible change in brightness and color, but a similar variation in R_{SW} (affecting oscillator frequency and power consumption) is much less noticeable. Combining the two is thus

a valid way to save a resistor. The bypass capacitor C_{BP} (IMP525 only) reduces display flicker in noisy environments, such as when there is no ground plane.

Figure 4. Using R_{SW} to supply current for both switch and EL oscillators, and also serve as a low-current on/off switch (IMP803 only).

Using the circuit in *Figure 5*, one can utilize an available $V_{\rm IN}$ that is higher or lower than the allowable $V_{\rm DD}$. The logic shutdown may also be separated from $V_{\rm DD}$. Such arrangements are helpful when the inductor supply is too low for the IC, or the display size requires a voltage that is too high for the IC.

A higher $V_{\rm IN}$ will need a higher switching frequency to keep the inductor out of saturation. In all cases, note the presence of HIGH VOLTAGE!

Figure 5. General Circuit, where chip V_{DD}, on/off logic and V_{IN} are all different.

Evaluation Board

The ELD002 is a PC board for evaluation and experimentation purposes. More compact arrangements are easily achieved by using surface-mounted components exclusively. The various possible connections mirror the options discussed in the data sheet and the Application Note. While the IMP803 is supplied on the board, other pin-compatible drivers may be substituted.

The two dark patches are the connections for the EL lamp which are made using conductive double-sided tape. The display itself is held down with ordinary double-sided tape. Taping is advantageous for several reasons, among which are that lamps with staked connecting terminals generally cost more, and they are a possible site for mechanical (and thus electrical) failure.

As a general precaution, note that HIGH VOLTAGE exists on the board; around 180V or so. The current level is low so there is no danger, except possible pain if a tender skin area or open cut contacts the HV sections.

There are extra holes for capacitors (if needed), and the hole spacings are wide enough to accommodate 1/4W resistors. Corner mounting holes have also been provided.

Figure 6. Evaluation Board Layout and Schematic.

Some Battery Considerations

To keep the board light in weight, a Li-Mn power source was selected. When energized, the drain from the circuit is around 22mA, thus the CR battery chemistry is preferred over the BR for its superior pulse performance. If long-term continual illumination is anticipated and space is not an issue, alkaline batteries may be more economical.

With the IMP803 and 560μ H inductor supplied, regulation begins at about 3-3.5V, but display illumination appears virtually

unchanged above 2.7V. When choosing the battery chemistry, it is a good idea to match the cell "plateau" voltages to this. For example, a typical NiCad plateau is 1.2V under load, so more than 2 cells would be needed. Alkaline plateaus are somewhat higher, and they differ with size, shape and duty, so 2 cells could suffice. Li-Mn coin cells have their voltage plateau under load at about 2.85 volts. They can drop lower, but they also return to close to 3V when the load is removed.

Additional Points

- 1) To experiment with the *Figure 4* scheme, a jumper may be run from the rightmost pad of R_{EL} to the leftmost pad of C_{BP} (with the + above it). Start with an R_{SW} of 750k Ω . Short leads and a ground plane are more critical in this arrangement.
- 2) C_S should be 10nF 100nF.
- 3) The IMP803, IMP560 and IMP525 datasheets show performance with different inductors. For example, high-voltage regulation is reached earlier with lower L, but this requires more current. This may be partially offset by adjustment of the oscillator resistors.
- 4) To experiment with multiple supplies, the appropriate jumpers may be removed.
- 5) The inclusion of R_{CL} should be stressed: while 500 Ω to 10k Ω has been used, 2k Ω is the best all-around value.

Layout Rules for Other Arrangements

- 1) A ground plane is recommended to keep stray high frequencies confined. In a very small area, the need for a ground plane may be nil. A totally surface-mount arrangement would make such a plane difficult anyway.
- 2) Locate high voltages away from the high-impedance elements R_{EL} and R_{SW} .
- 3) Make sure that C_S has a rating of at least 100V.
- 4) The diode should have good reverse-recovery characteristics (the general-purpose 1N4148 is adequate) and should be rated for pulsed BV > 100V for the IMP803, and pulsed BV > 75V for the IMP560 and IMP525.
- 5) Shutdown by a logic-level signal is possible by connecting R_{SW} to ground (R_{SW} is normally connected to V_{DD}). This on/off logic uses only 1µA max. when connected at this location.
- 7) Required voltage ratings for the capacitors other than C_S are flexible, and need only reflect actual stresses plus a safety margin.

Bill of Materials for ELD001

Component	Description	Manufacturer	Part Number
Resistors (±5%)	See Table, below		
Capacitors (±20%)	See Table, below	Murata	RPE121/122 Series
Switch	SPST, momentary	Panasonic	P8008S
Battery	3.0V Li-Mn Coin	Sony Panasonic	CR2450-HE4 CR2354-IGU
Inductor	L1 = 560µH	Murata	LQH4N561K04
Diode	D1 = 1N4148		
Lamp	1.3" x 2.05"	MetroMark or other	
Conductive Tape	Connects display	Adhesives Research	ARclad 8001
Double-Sided Tape	Holds display down	3M	Туре 665

Key to Components and Ratings

Component	Value	Function	Comments
R _{SW}	$30k\Omega$ to $3M\Omega$	Sets switch osc. frequency.	Decrease R to increase frequency.
R _{EL}	500kΩ to 10MΩ	Sets bridge osc. frequency.	Decrease R to increase frequency.
R _{CL}	500Ω to $2k\Omega$	Limits output current.	Protects IC.
Cs	0.01μF to 0.1μF, 100V	Stores high voltage.	Use low values for large lamps.
C _{BATT}	0.1μF, 10V	Supply bypass.	Keeps supply impedance low.
C _{BP}	1nF, 10V	Lowers noise at R _{SW} .	IMP525 only.
C _{IN}	0.1μF to 22μF	Supply bypass.	Keeps supply impedance low.
L1	100μH to 1mH	Stores energy.	Small L, high f increases V _{OUT} .
D1	100V, 10mA (1N4148)	Passes energy from L to C _S .	Use fast recovery type.

APPENDIX: Introduction to EL Lamps

Chemical compounds, called phosphors, glow when energy is applied to them. This excitation energy can come from conducted or radiated electrons, or an electric field. A common example of this process is found in the emitted (radiated) electrons that impinge on the dots and stripes of color monitors and TVs, whose phosphors emit everything from pure colors to white light, depending on their formulations.

Backlights and lamps generally are simpler, employing a manganese-activated zinc sulfide phosphor (ZnS:Mn) that is excited by a high-voltage (> 40V) AC electric field (DC can shorten the lamp life). Fabrication involves depositing the phosphor as a thin film onto a BaTiO3 dielectric between conducting planes, like a capacitor: one of the planes is the transparent conductor, indium tin oxide (ITO). The lamp color depends on phosphor formulation, but also on its physical realization (i.e. encapsulation, resins, dyes, etc.), plus the characteristics of the drive circuitry.

The IMP line of drivers is targeted mainly at applications like backlight EL and stand-alone pre-printed or segmented lamps. Backlights are used with the Liquid-Crystal Displays found in cellular telephones, pagers, Personal Digital Assistants (PDAs), and general-purpose local lighting applications where low power consumption without heat is important (e.g. airline cockpits, medical instrumentation).

The excitation required for lamps ranges from tens to hundreds of volts, at frequencies from 60Hz to a few kHz. Each display has an optimum combination depending on size, color, efficiency and desired brightness.

In general, the changes in brightness with frequency and voltage are nearly linear. These facts allow tradeoffs. For example, if going above a certain voltage is not allowed, an increase in drive frequency may achieve the same result.

Addendum

The new evaluation board ELD002 is now available and will be sent out to all new purchasers. This Addendum will serve to explain the differences and update the information in AN-1.

Changes

The diagrams below show the basic wiring of ELD001 (see AN-1, *Figure 6*) on the left and ELD002 on the right. The difference is that, with ELD002, the 3V cell is switched to the V_{DD} pin, and this voltage only goes to the inductor if JP1 is connected. If JP1 is open, an alternate voltage can be used to power the inductor.

In contrast, the ELD001 switched power to the inductor, and to V_{DD} only if JP1 was connected. This was intended to demonstrate the logic-level shutdown ability of the IMP803: by using the pushbutton for the heavy current to the inductor, the V_{DD} pin could be tied to a voltage source and the chip enabled/disabled by a logic level of V_{DD} or ground applied to R_{SW} . The ELD002 board allows both features to be exercised. For ELD001 users who wish to modify their boards, the changes are shown below.

Updates

- 1) I_{DDQ} is listed as 1µA max. (AN-1, pp 3, 6, 7). Extensive testing has shown this to be much too conservative: 25nA is much more typical.
- 2) In using R_{SW} to shut-down the IMP803 (only 25nA), R_{EL} can remain connected to the V_{DD} pin; only 1 resistor then needs to be switched.
- 3) Under some circumstances, R_{CL} can be omitted. Consult IMP for details.
- 4) For single-battery systems (the vast majority), the capacitor shown on the diagram as C_{IN} is not needed. For cases where it is needed, further "surgery" is required: cut the trace shown as (A) and reconnect it as per the dotted line.

ISO 9001 Registered

Application Note 4

POWER MANAGEMENT

EL DRIVER AN-4

EL Driver Demonstration PC Boards, IMP-DBM and IMP-DBS

Introduction

These Demonstration Boards provide a platform for demonstration and experimentation with IMP's EL lamp drivers IMP803, IMP560 and IMP525. The PC board has space for all of the components required for a complete application circuit. In addition, compact size facilitates their use in prototype systems.

For normal operation, the enable pad (EN), the V_{DD} pad and the V_L pad are all connected to the positive supply voltage. If the board is located far from the supply, a $10\mu F/10V$ tantalum capacitor from V_L to GND should be used to keep supply impedance low (This cap, or its equivalent, is normally present in a manufactured circuit). Also, better noise immunity may be achieved by utilizing separate wires for the V_L and V_{DD} connections.

The C_{BATT} capacitor is used to bypass the supply pin of the IC. The C_{SW} capacitor (IMP525 only) is utilized to reduce noise on the high impedance R_{SW} pin. C_{SW} should never be greater than 100pF since this can result in instability of the 525's internal oscillator.

The layout was designed to reduce the effects of noise through use of a ground plane and by separation of the high-current components (inductor, diode, and reservoir capacitor) from the high-impedance portion of the circuit (the high-value frequencysetting resistors). Additionally, the lengths of high-current traces were minimized.

If parts are replaced or exchanged by hand- soldering, care should be taken to thoroughly clean the residual flux from the board surface. Otherwise, resultant leakage currents may prevent proper operation of the part. The tight spacing and high impedances of input nodes on the PCB exacerbate this effect. The predominant impact of PCB leakage is a shift in the switch and commutation frequencies away from their designed values due to leakage currents from the $R_{\rm SW}$ and $R_{\rm EL}$ pins.

Figure 1. Top View of Printed Circuit Board

Figure 2. Demonstration Board Schematic.

Table 1. Bill of Materials (use as required)

Component	Package	Manufacturer and Part Number	IMP803	IMP560	IMP525
R _{SW}	0603	Any	750kΩ	750kΩ	1MΩ
R _{EL}	0603	Any	2MΩ	2MΩ	1MΩ
R _{CL}	0603	Any	510Ω		
L1	1812	Murata LQH4N561K04	560µH	560µH	560µH
Cs	0805	NovaCap 0805B683K101NT	68nF/100V	68nF/100V	68nF/100V
D1	SOD80	4148-type	100V	75V	75V
C _{BATT}	0603	Any	100nF	100nF	100nF
C _{SW}	0603	Any	—	—	100pF, max
					AN04.t01

 Table 2. Component Description Table

Component	Function	Comments
R _{SW}	Sets switch frequency	Decreasing R increases frequency.
R _{EL}	Sets commutation frequency	Decreasing R increases frequency.
R _{CL}	Limits output current	Optional <i>external</i> part: protects bridge if $V(C_S) > 80V$ (IMP803 only).
L1	Boost inductor	Delivers energy to C _S .
Cs	Reservoir capacitor	Delivers energy to commutating bridge.
C _{SW}	Noise reduction capacitor	Optional, use if flickering is observed (IMP525 only).
C _{BATT}	Supply bypass capacitor	Optional (use if missing from external circuit)
D1	Catch diode	Fast recovery diode recommended. Observe BV _{REV} .
		AN04.102

Package Information

Package Dimensions

	Inc	hes	Millimeters		
	Min	Max	Min	Max	
		MicroSC) (8-Pin)		
Α		0.0433		1.10	
A1	0.0020	0.0059	0.050	0.15	
A2	0.0295	0.0374	0.75	0.95	
b	0.0098	0.0157	0.25	0.40	
С	0.0051	0.0091	0.13	0.23	
D	0.1142	0.1220	2.90	3.10	
е	0.025	6 BSC	0.65	BSC	
E	0.193	BSC	4.90 BSC		
E1	0.1142	0.1220	2.90	3.10	
L	0.0157	0.0276	0.40	0.70	
а	0°	6°	0°	6°	
		SO (8	B-Pin)		
A	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
В	0.013	0.020	0.33	0.51	
С	0.007	0.010	0.19	0.25	
е	0.0	50	1.:	27	
Е	0.150	0.157	3.80	4.00	
Н	0.228	0.244	5.80	6.20	
L	0.016	0.050	0.40	1.27	
D	0.189	0.197	4.80	5.00	

SO (8-Pin)

Tape & Reel Specifications

Tape Schematic⁵

Embossed Tape — Constant Dimensions

Tape Size	D	Е	P0	P2	T Max.	T1 Max.
8mm and 12mm	$(0.59^{+0.10}_{-0.0})$	$\begin{array}{c} 1.75 \pm 0.10 \\ (0.069 \pm 0.004) \end{array}$	4.0 ± 0.10 (0.157 ± 0.004)	2.0 ± 0.05 (0.079 ± 0.002)	0.600 (0.024)	0.10 (0.004)

ELD/B_t02.at3

Embossed Tape — Variable Dimensions

Tape Size	A0, B0, K0	B1 See Note 4	D1 See Note 3	F	T2	P1	W
8mm 1/2 Pitch	See Note 1	4.55	1.0	3.5 ± 0.05	2.5 Max.	$\begin{array}{c} 2.0 \pm 0.10 \\ (0.079 \pm 0.004) \end{array}$	8.0 ^{+0.3} -0.1
8mm	See Note 1	(0.179)	(0.039)	(0.138 ± 0.002)	(0.098)	$\begin{array}{c} 4.0 \pm 0.10 \\ (0.157 \pm 0.004) \end{array}$	(0.315 ^{+ 0.012} _{- 0.004})
12mm	See Note 1	8.2	1.5	5.5 ± 0.05	6.5 Max.	$\begin{array}{c} 4.0 \pm 0.10 \\ (0.157 \pm 0.004) \end{array}$	12.0 ± 0.30
12mm Double Pitch	See Note 1	(0.323)	(0.059)	(0.217 ± 0.002)	(0.256)	$\begin{array}{c} 8.0 \pm 0.10 \\ (0.315 \pm 0.004) \end{array}$	(0.472 ± 0.012)

ELD/B_t03.at3

- Notes: 1. A0, B0 and K0 are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A0, B0 and K0) must be within 0.05mm (0.002) minimum and 0.50mm (0.020) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see Component Rotation).
 - 2. Tape with components shall pass around radius.
 - 3. The embossment hole location shall be measured from the spocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
 - 4. B1 dimension is a reference dimension for tape feeder clearance only.
 - 5. Electronic Industries Association, Standard EIA-481-1.

Tape & Reel Specifications

Tape Layout

Emboss05.eps

Tape Camber (Top View)

Allowable camber to be 1mm/100mm nonaccumulative over 250mm.

Tape Leader and Trailer Dimensions

Reel Dimension

Emboss03.eps

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tape Size	A Max.	B Min.	С	D Min.	N Min.	W1	W2 Max.	W3
12.4 - 0.0 18.4 (0.469)	8mm	330	1.5	13.0 ± 0.20	20.2	50	$8.4^{+1.5}_{-0.0}$ $(0.331^{+0.059}_{-0.0})$		(0.311) 10.9 Max.
	12mm	(12.992)	(0.059)	(0.512 ± 0.008)	(0.795)		(0.488 + 0.078 - 0.0)		(0.469) 15.4 Max.

Tape Layout

User Direction of Feed

IMP, Inc. Corporate Headquarters 2830 North First Street San Jose, CA 95134 Main: 408.432.9100 Sales: 408.434.1277 Fax: 408.434.1215 E-mail: info@impinc.com Web: www.impweb.com

Asia Pacific Area Sales Office Philip Wong IMP, Inc. 391A Orchard Road #12-01, Ngee Ann City Tower A Singapore 238873 Tel: 65.838.5046 x225 Fax: 65.235.9340 E-mail: philipw@impinc.com

Eastern Area Sales Office Dan Rakosky IMP, Inc.

The function of the f

Central Area Sales Office

John Watson IMP, Inc. 3100 Independence Pkwy Ste. 311-366 Plano, TX 75075 Tel: 972.964.0836 Fax: 972.758.0147 E-mail: john@augustmail.com

Western Area Sales Office Michael Turner

 IMP, Inc.

 2830 North First Street

 San Jose, CA 95134

 Tel:
 408.434.1228

 Fax:
 408.434.1215

 E-mail:
 mturner@impinc.com

IMP Foundry Services Michael Turner

IMP, Inc.2830 North First StreetSan Jose, CA 95134Tel:408.434.1228Fax:408.434.1215E-mail:mturner@impinc.comWeb:www.impweb.com

North American Representatives

 Alabama

 BITS, Inc.

 Huntsville, AL

 Tel:
 256.534.4020

 Fax:
 256.534.0410

 Web:
 www.bits1.com

Alaska

 ELREPCO - Northwest

 Beaverton, OR

 Tel:
 503.520.1900

 Fax:
 503.520.1906

Arizona *NELCO TWO Company* Chandler, AZ Tel: 602.726.2334 Fax: 602.726.2338

Arkansas

Kruvand Associates, Inc. Richardson, TX Tel: 972.437.3355 Fax: 972.680.8854 Web: www.kruvand.com

Kingwood, TX Tel: 713.956.6741 Fax: 972.680.8854

Austin, TX Tel: 512.219.9441 Fax: 972.680.8854

California: Northern Quorum Technical Sales Santa Clara, CA Tel: 408.980.0812 Fax: 408.748.1163

Sacramento Reno AreaQuorum Technical SalesParadise, CATel:530.877.5772Fax:530.699.4007

 California: Southern

 Spectrum Rep Company

 Irvine, CA

 Tel:
 949.461.5280

 Fax:
 949.461.5290

 Rancho Santa Margarita, CA

 Tel:
 949.766.6700

 Fax:
 949.766.6701

Mission Viejo, CA Tel: 949.367.3132 Fax: 949.367.3133

San Diego, CA Tel: 619.618.1440 Fax: 619.618.1442

Canada Maritime Provinces, Quebec, Ontario Polar Components, Inc. Dorval, Quebec Tel: 514.683.3141 Fax: 514.683.3966

Kanata, Ontario Tel: 613.592.8807 Fax: 613.592.6310

Woodbridge, Ontario Tel: 416.410.3377 Fax: 416.410.0056

British Columbia and Alberta

 ELREPCO - Northwest.

 Redmond, WA

 Tel:
 425.885.5880

 Fax:
 425.882.0642

Colorado

 PromoTech Sales

 Denver, CO

 Tel:
 303.692.8484

 Fax:
 303.692.8416

Connecticut

 S-J New England

 North Billerica, MA

 Tel:
 978.670.8899

 Fax:
 978.670.8711

Delaware

Astrorep Mid Atlantic, Inc. Warminister, PA Tel: 215.957.9580 Fax: 215.957.9583 Web: www.astrorep.com

Florida

 Marathon Technical Sales

 Orlando, FL

 Tel:
 407.872.5775

 Tel:
 800.713.9156

 Fax:
 407.872.0535

 Web:
 www.marathontech.com

Melbourne, FL Tel: 477.728.7706 Fax: 407.952.8725 Web: www.marathontech.com

 St. Petersburg, FL

 Tel:
 727.894.3603

 Fax:
 727.894.3804

 Web:
 www.marathontech.com

Fort Lauderdale, FL Tel: 954.785.0072 Fax: 954.782.7090 Web: www.marathontech.com Cooper City, FL Tel: 954.450.8211 Fax: 954.450.8213 Web: www.marathontech.com

Georgia *BITS, Inc.* Norcross, GA Tel: 770.564.5599 Fax: 770.564.5588 Web: www.bits1.com

Illinois Northern Illinois Area *Horizon Technical Sales, Inc.* Downers Grove, IL Tel: 630.852.2500

Tel:630.852.2500Fax:630.852.2520

Southern Illinois Area

 Central Tech Sales, Inc.

 St. Louis, MO

 Tel:
 314.878.6336

 Fax:
 314.878.6550

Indiana

 Schillinger Associates, Inc.

 Kokomo, IN

 Tel:
 765.457.7241

 Fax:
 765.457.7732

Iowa

 Matrix Marketing Group

 Bloomington, MN

 Tel:
 612.835.6977

 Fax:
 612.835.6822

Kansas

 Central Tech Sales, Inc.

 St. Louis, MO

 Tel:
 314.878.6336

 Fax:
 314.878.6550

Kentucky

 Schillinger Associates, Inc.

 Kokomo, IN

 Tel:
 765.457.7241

 Fax:
 765.457.7732

Louisiana

Kruvand Associates, Inc. Richardson, TX Tel: 972.437.3355 Fax: 972.680.8854 Web: www.kruvand.com

Austin, TX Tel: 512.219.9441 Fax: 972.680.8854

Maine

 S-J New England

 North Billerica, MA

 Tel:
 978.670.8899

 Fax:
 978.670.8711

Maryland

Astrorep Mid Atlantic, Inc. Warminister, PA Tel: 215.957.9580 Fax: 215.957.9583 Web: www.astrorep.com

Massachusetts S-J New England North Billerica, MA Tel: 978.670.8899 Fax: 978.670.8711

Mexico

Sonora and Chilhuahua Areas NELCO TWO Company El Paso, TX Tel: 915.833.7300 Fax: 915.833.1771

Monterrey Area

 Kruvand Associates, Inc.

 Col. Del Valle, C.P. Mexico

 Tel:
 52.8.335.88.67

 Fax:
 52.8.335.10.65

 Web:
 www.kruvand.com

Michigan

Schillinger Associates, Inc. Kokomo, IN Tel: 765.457.7241 Fax: 765.457.7732

Minnesota

Matrix Marketing Group Bloomington, MN Tel: 612.835.6977 Fax: 612.835.6822

Mississippi

BITS, Inc. Huntsville, AL Tel: 256.534.4020 Fax: 256.534.0410 Web: www.bits1.com

Missouri

 Central Tech Sales, Inc.

 St. Louis, MO

 Tel:
 314.878.6336

 Fax:
 314.878.6550

Montana

 NELCO TWO Company

 Boise, ID

 Tel:
 208.343.9171

 Fax:
 208.343.9170

Nebraska

 Central Tech Sales, Inc.

 St. Louis, MO

 Tel:
 314.878.6336

 Fax:
 314.878.6550

New Hampshire

 S-J New England

 North Billerica, MA

 Tel:
 978.670.8899

 Fax:
 978.670.8711

New Jersey Northern New Jersey Area Astrorep New York, Inc. Babylon, NY Tel: 516.422.2500 Fax: 516.422.2504 Web: www.astrorep.com

Southern New Jersey Area Astrorep Mid Atlantic, Inc. Warminister, PA Tel: 215.957.9580 Fax: 215.957.9583 E-mail: 100710.546@compuserve.com Web: www.astrorep.com

 New Mexico

 NELCO TWO Company

 Albuquerque, NM

 Tel:
 505.293.1399

 Fax:
 505.293.1011

New York Metro

 Actro
 New York, Inc.

 Babylon, NY
 Tel:
 516.422.2500

 Fax:
 516.422.2504
 Web:

Upstate

 Quality Components

 Manlius - Main office

 Tel:
 315.682.8885

 Fax:
 315.682.2277

North Carolina Eastern Area

 BITS, Inc.

 Raleigh, NC

 Tel:
 919.807.1000

 Fax:
 919.807.1001

 Web:
 www.bits1.com

Western Area BITS, Inc. Charlotte, NC Tel: 704.540.8185 Fax: 704.540.8183

Fax: 704.540.8183 Web: www.bits1.com

North Dakota Matrix Marketing Group Bloomington, MN

 Bioomington, MN

 Tel:
 612.835.6977

 Fax:
 612.835.6822

South Dakota Matrix Marketing Group Bloomington, MN Tel: 612.835.6977 Fax: 612.835.6822

Ohio

 The Lyons Corporation

 Westernville, OH

 Tel:
 614.895.1447

 Fax:
 937.278.3609

Oklahoma

Kruvand Associates, Inc. Richardson, TX Tel: 972.437.3355 Fax: 972.680.8854 Web: www.kruvand.com

Austin, TX Tel: 512.219.9441 Fax: 972.680.8854 Web: www.kruvand.com

Oregon

 ELREPCO - Northwest

 Beaverton, OR

 Tel:
 503.520.1900

 Fax:
 503.520.1906

Pennsylvania

Eastern Area Astrorep Mid Atlantic, Inc. Warminister, PA Tel: 215.957.9580 Fax: 215.957.9583 Web: www.astrorep.com

Western Area The Lyons Corporation

 Shelocta, PA

 Tel:
 724.354.3105

 Fax:
 937.278.3609

 Web:
 www.astrorep.com

Puerto Rico

Marathon Technical Sales Mayaguez, PR Tel: 787.831.4050 Fax: 787.831.4250 Web: www.marathontech.com

Rhode Island S-J New England North Billerica, MA

Tel: 978.670.8899 Fax: 978.670.8711

South Carolina

BITS, Inc. Charlotte, NC Tel: 704.540.8185 Fax: 704.540.8183 Web: www.bits1.com

Tennessee Eastern Area BITS, Inc. Charlotte, NC Tel: 704.540.8185 Fax: 704.540.8183 Web: www.bits1.com

 Western Area

 Huntsville, AL

 Tel:
 256.534.4020

 Fax:
 256.534.0410

 Web:
 www.bits1.com

Texas

Kruvand Associates, Inc. Richardson, TX Tel: 972.437.3355 Fax: 972.680.8854 Web: www.kruvand.com

Houston Area

Kingwood, TX Tel: 713.956.6741 Fax: 972.680.8854 Web: www.kruvand.com

Austin Area

Austin, TX Tel: 512.219.9441 Fax: 972.680.8854 Web: www.kruvand.com

El Paso Area

 NELCO TWO Company

 Albuqerque, NM

 Tel:
 505.293.1399

 Fax:
 505.293.1011

Vermont

 S-J New England

 North Billerica, MA

 Tel:
 978.670.8899

 Fax:
 978.670.8711

Virginia

Astrorep Mid Atlantic, Inc. Charlottsville, VA Tel: 804.293.7717 Fax: 804.293.3447 Web: www.astrorep.com

Washington

 ELREPCO - Northwest

 Redmond, WA

 Tel:
 425.885.5880

 Fax:
 425.882.0642

Washington D.C. Astrorep Mid Atlantic, Inc. Warminister, PA Tel: 215.957.9580 Fax: 215.957.9583 Web: www.astrorep.com

Wisconsin

Eastern AreaHorizon Technical Sales, Inc.Hartford, WITel:414.670.6776Fax:414.670.6778

Western Area Matrix Marketing Group Bloomington, MN Tel: 612.835.6977 Fax: 612.835.6822

Wyoming

 NELCO TWO Company

 Boise, ID

 Tel:
 208.343.9171

 Fax:
 208.343.9170

Products are distributed in the U.S. by Jaco Electronics, Inc.

Jaco Corporate Headquarters

145 Oser Avenue Hauppauge, NY 11788 Tel: 516.273.5500 TOLL FREE: 800.989.JACO E-mail: info@jacoelectronics.com Internet: www.jacoelectronics.com

Eastern Region

NY, N. NJ, MA, CT, RI, VT, ME, MD, WV, VA, PA, S. NJ, DE, NC, SC, TN, MS, AL, GA, KY, FL

Jaco Electronics, Inc.

145 Oser AvenueHauppauge, NY 11788Tel:516.273.5500Fax:516.273.5799

Jaco Electronics, Inc.

 1053 East Street

 Tewksbury, MA 01876

 Tel:
 978.640.0010

 Fax:
 978.640.0755

 E-mail:
 jacomass@aol.com

Jaco Electronics, Inc.

River Center 10260 Old Columbia Road Columbia, MD 21046 Tel: 410.995.6620 Fax: 410.995.6032 E-mail: jacomd@mindspring.com

Jaco Electronics, Inc.

1191 E. Newport Center Dr. Deerfield Beach, FL 33442 Tel: 954.425.0304 Fax: 954.425.8077 E-mail: jacofla@mindspring.com

Jaco Electronics, Inc.

5204 Greens Dairy Road Raleigh, NC 27616 Tel: 919.876.7767 Fax: 929.876.6964 E-mail: jacose@mindspring.com

Southwest Region

S. CA, NV, AZ

Jaco Electronics, Inc. 2282 Townsgate Road Westlake, CA 91361 Tel: 805.495.9998 Fax: 805.494.3864 E-mail: jacowest@earthlink.net

Jaco Electronics, Inc.

22815 Savi Ranch Pkwy Ste. E Yorba Linda, CA 92887 Tel: 714.283.8185 Fax: 714.283.8191 E-mail: jacooc@earthlink.net

Jaco Electronics, Inc.

521 S. 48th Street, Ste. 104 Tempe, AZ 85281 Tel: 602.967.1114 Fax: 602.967.1144 E-mail: jacoarizona@earthlink.net

Northwest Region

N. CA, MT, WY, CO, WA, OR, ID, UT

Jaco Electronics, Inc. 4010 Moorpark Ave, Ste. 201 San Jose, CA 95117 Tel: 408.261.6700 Fax: 408.261.6717 E-mail: jacosj@pacbell.net

Jaco Electronics, Inc. 4900 SW Griffith Dr, Ste. 250

 Beaverton, OR
 97005

 Tel:
 503.626.1439

 Tel:
 800.245.JACO

 Fax:
 503.626.0979

 E-mail:
 info@jacopacificnw.com

Jaco Electronics, Inc.

17220 127th Place N.E., Ste. 300 Woodinville, WA 98072 Tel: 425.481.3372 Tel: 800.245.JACO Fax: 425.481.1664 E-mail: macsz28@worldnet.att.net

Central Region

TX, OK, KS, LA, AR, W. MO, NE, MN, ND, SD, IA, WI, IL, IN, MI, E. MO

Jaco Electronics, Inc.

1209 N. Glenville Drive Richardson, TX 75081 Tel: 972.234.5565 Fax: 972.238.7068 E-mail: jacotx@flash.net

Jaco Electronics, Inc.

2120-A Braker Lane Austin, TX 78758 Tel: 512.835.0220 Fax: 512.339.9252 E-mail: jacoaus@mindspring.com

Jaco Electronics, Inc.

101 E. Commerce Drive Schaumburg, IL 60173 Tel: 847.884.6620 Fax: 847.884.7573 E-mail: jheerhold@jacoelectronics.com

Jaco Electronics, Inc.

 10340 Viking Drive, Ste. 115

 Eden Prairie, MN 55344

 Tel:
 612.941.2757

 Fax:
 612.941.1989

 E-mail:
 jacomn@theoffice.com

IMP International Sales Locations

IMP, Inc. Corporate Headquarters 2830 North First Street San Jose, CA 95134 Main: 408.432.9100 Sales: 408.434.1277 Fax: 408.434.1215 E-mail: info@impinc.com

Internet: www.impweb.com

Asia Pacific Area Sales Office Philip Wong IMP, Inc. 391A Orchard Road #12-01, Ngee Ann City Tower A Singapore 238873 Tel: 65-838.5046 x225 Fax: 65.235.9340 E-mail: philipw@impinc.com

Australia

Arrow Electronics Australia Pty Ltd. Headquarters 9 Bastow Place Mulgrave VIC 3170 Australia Tel: 61.3.9574.9300 Fax: 61.3.9561.2148 E-mail: simpson@arwnet.com.au Web: www.arrow.com.au

169 Unley Rd 1st Floor, Ste. 16 Unley SA 5061 Australia Tel: 618.232.3922 Fax: 618.232.3929 Web: www.arrow.com.au

17 Bowen Bridge Rd Unit 43 Herston QLD 4006 Australia Tel: 61.7.3216.0770 Fax: 61.7.3216.0772 Web: www.arrow.com.au

64 Canning Hwy, Ste. 1 Victoria Park WA 6100 Australia Tel: 61.9.472.3855 Fax: 61.9.470.3273 Web: www.arrow.com.au

Level 4, 5 Belmore Street Burnwood NSW 2134 Australia Tel: 61.2.9745.1400 Fax: 61.2 9745.1401 Web: www.arrow.com.au

China Wuhan P&S Electronics Co. Ltd. 15 Shuo Dao Quan Road Wuhan, Hubei 430079 P.R.C. 86.27.87493500 Tel: 86.27.87493506 Fax: 86.27.87491166 Web: www.p8s.com Beijing 86.10.62549897 Tel: 86.10.62536518 Fax: Web: www.p8s.com Shanghai Tel: 86.21.64712494 Fax: 86.21.64714208 Web: www.p8s.com Shenzhen Tel: 86.755.3245517 Fax: 86.755.3269613 Web: www.p8s.com Chengdu Tel: 86.28.5575657 Fax: 86.28.5563631 Web: www.p8s.com Nanjing Tel: 86.25.6618571 86.25.6509932 Fax: Web: www.p8s.com Wuhan 86.27.87862631 Tel: Fax: 86.27.87862632 www.p8s.com Web: Xi'an Tel: 86.29.5214247 Fax: 86.29.5218840 Web: www.p8s.com **Czech Republic Computer Controls AG** Svetova 10 18000 Prague 8 Czech Republic Tel: 42.2.66.31.30.53 Fax: 42.2.684.00.80 Denmark Dan-Contact (a member of

 the TEKELEC group)

 Smakkegaardsvej 145

 DK-2820 Gentofte

 Denmark

 Tel:
 45.39.68.36.33

 Fax:
 45.39.68.33.62

France

A2M 5 Rue Carle Vernet 92315 Sevres Cedex France Tel: 33.1.46.23.79.00 Fax: 33.1.46.23.79.23

Germany

Tekelec Airtronic GmbH Kapuzinerstrasse 9 80337 Munich 2 Germany Tel: 49.89.5164.0 Fax: 49.89.5164.110

Hong Kong

EIL Company Limited Unit A, 9/F, V GA Building, 532 Castle Peak Road, Kowloon Hong Kong Tel: 852.2741.6811 Fax: 852.2370.9297

Hungary

 Computer Controls AG

 Karpat u. 4811

 H-1133 Budapest

 Hungary

 Tel:
 36.1.3395219

 Fax:
 36.1.3395219

India

CoreEl MicrosySte.ms 46750 Fremont Blvd., Ste. 208 Fremont, CA 94538 USA Tel: 510.770.2277 Fax: 510.770.2288

CG-CoreEl Logic SySte.ms Surva Bhavan

1181 Fergusson College Rd Shivaji Nager, Pune 411005 India Tel: 91.212.323982 Fax: 91.212.323985

Ireland

Curragh Technology Ltd. Block H, Lock Quay, Clare Street Limerick Ireland Tel: 353.61.316116 Fax: 353.61.316117

Israel

IES Electronics Agencies Ltd. 32 Ben Gurion Street Ramat-Gan 52573 Israel Tel: 972.3.7530776 Fax: 972.3.7530701 Japan Teksel Co., Ltd. Headquarters TBC, 2-27-10 Higashi, Shibuya-Ku, Toyko, 150-0011 Japan Tel: 81.35.467.9105 Fax: 81.35.467.9346 E-mail: imp@teksel.co.jp Web: www.teksel.co.jp

Osaka Branch Shin Osaka Meikou Building 4-3-12 Miyahara,Yodogawa-Ku, Osaka-Shi 532-0003 Japan Tel: 81.66.399.5000 Fax: 81.66.399.0999 Web: www.teksel.co.jp

Nagoya Branch KS Building 3-18-28 Marunouchi, Naka-Ku Nagoya-Shi 460-0002 Japan Tel: 81.52.971.3611 Fax: 81.52.971.3622 Web: www.teksel.co.jp

Nagano Branch OAU Building 2-1-22 Tenjin, Ueda-Shi Nagano 386-0025 Japan Tel: 81.268.23.7411 Fax: 81.268.23.7412 Web: www.teksel.co.jp

Japan

Teksel Co., Ltd.Kyusyu BranchBDai 5 Hakata Kaisei Building1-18-25 Hakata Eki-Higashi,Hakata-Ku Fukuoka-ShiFukuoka 812-0013JapanTel:81.92.531.7277Fax:81.92.531.9960Web:www.teksel.co.jp

Korea

 Acetronix

 5th Floor Namhan Bldg.

 76-42 Hannam-Dong

 Yongsan-Ku, Seoul

 Korea

 Tel:
 822.796.4561

 Fax:
 822.796.4563

WaveTech Korea, Co., Ltd

3F, Cest Bien Bldg., 542-4 Shinsa-dong, Kangnam-ku Seoul 135-120 Korea Tel: 822.545.1231 Fax: 822.545.1245 Web: www.wavetech.co.kr

AIN Electronics, Inc. Rm. 203, Blk A, Sin-Sung Officetel 1588-1 Seocho-Dong, Seocho-ku Seoul 135-120 Korea Tel: 8222.581.1741 Fax: 822.581.1740

Liechtenstein

Computer Controls AG Neunbrunnenstr. 55 CH-8050 Zurich Switzerland Tel: 41.1.308.66.66 Fax: 41.1.308.66.55

Malaysia

Sabre Technologies Pte. Ltd. 104 Boon Keng Road #07-07 Kallang Basin Industrial Estate Singapore 1233 Tel: 65.2932003 Fax: 65.2930661

Netherlands

Tekelec Airtronic B.V.Ypsilon HouseEngelandlaan 3102711 DZ Zoetermeer2701 Ac ZoetermeerNetherlandsTel:31.79.3461430Fax:31.79.341750

New Zealand

Arrow Electronics Australia Pty Ltd. 19 Pretocia Street P.O. Box 31186 Lower Hutt 6009 New Zealand Tel: 64.4.570.2260 Fax: 64.4.566.2111

Poland

Computer Controls AG c/o WG Electronics ul. Nowogrodzka 42 00-695 Warszawa Poland Tel: 48.22.629.57.58 Fax: 48.22.628.48.50

Singapore

Sabre Technologies Pte. Ltd. 104 Boon Keng Road #07-07 Kallang Basin Industrial Estate Singapore 339775 Tel: 65.2932003 Fax: 65.2930661

Spain

 Tekelec Espana S.A.

 General Aranaz, 49

 28027 Madrid

 Spain

 Tel:
 34.91.320.4160

 Fax:
 34.91.320.1018

Sweden

Martinsson Elektronik AB Instrumentvagen 16 Box 9060 S-12609 HagerSte.n Sweden Tel: 46.8.744.0300 Fax: 46.8.744.7922

Switzerland

Computer Controls AG Neunbrunnenstr. 55 CH-8050 Zurich Switzerland Tel: 41.1.308.66.66 Fax: 41.1.308.66.55

Taiwan

 Maxtek Technology Co., Ltd.

 3F, No. 197, Sec. 4,

 Nanking E. Road, Taipei

 Taiwan

 Tel:
 886.2.713.0209

 886.2.718.2084

 Fax:
 886.2.712.6780

Thailand

Massworld Co., Ltd. 72/30 Ban Phunravee 1 Rama 3 Road Yannawa Bangkok 10120 Thailand Tel: 66.2.2944930 Fax: 66.2.2942074

United Kingdom

Sequoia Technology Ltd. (a member of the TEKELEC group) Tekelec House, Back Lane, Spencers Wood, Reading, Berkshire RG7 1PW United Kingdom Tel: 44.118.925.8000 Fax: 44.118.925.8020

For any location not listed, please direct inquiries to IMP sales.

REPLIST 6-11-99

From Oakland International Airport

Go South on 880 and turn right at the Montague Expressway exit, move left out of the car pool lane. Turn left on Zanker Road and then turn right on Daggett Drive.

For Additional Directions 408-432-9100

From San Jose International Airport

From Terminal Drive go to Airport Blvd. From Airport Blvd., turn onto Airport Pkwy. (Airport Pkwy becomes Brokaw Road after 101). Turn left on North First Street, then turn right on Daggett Drive.

Quality Priority

Quality in everything we do is a fundamental IMP commitment. Quality may not be sacrificed for any other priority. Before any action is taken, the effect on quality as seen by employees and by customers must be considered.

Product Quality Conformance

Products and services for our customers will conform to all requirements. Products will meet performance specifications. Services will be complete, meet described requirements, and will be in a format appropriate for the customer's use. If a specification cannot be met in full, the customer will be advised and a new specification will be negotiated.

Product and Process Quality Improvement

All processes, manufacturing, manufacturing planning, customer service, product design and design of manufacturing processes shall utilize Total Quality Management concepts including Statistical Process Control techniques and designed experiments to ensure continual improvement of products and services.

Employee Responsibility

Each employee is responsible for performing their work correctly and completely. This responsibility for quality performance applies to all design work, development work, manufacturing work and to all supporting work. It applies to all employee levels. It cannot be abandoned or delegated. No one else can take responsibility.

IMP's Commitment of Support

IMP will provide the tools, the training, and the time necessary for employees to meet their responsibilities.

Employee Participation

IMP encourages all employees to take part in the open discussion, analysis and resolution of problems through participation in quality and productivity teams or through personal suggestions.

DET NORSKE VERITAS QUALITY SYSTEM CERTIFICATE

Certificate No. 96-HOU-AQ-8474

This is to certify that the Quality System of

IMP INC.

at

2830 North First Street, San Jose, CA 95134 USA

Has been found to conform to Quality Standard:

ISO 9001, 1994

This Certificate is valid for the following products/service ranges:

DESIGN AND MANUFACTURE OF ANALOG AND MIXED-SIGNAL INTEGRATED CIRCUITS AND WAFER FABRICATION SERVICES

Place and date: Houston, Texas; 01 November 1996	Ä	This certificate is valid until: 08 August 1999
for the Accredited Unit: Det Noeske Veritas Certification, Inc. Houston, Texas, USA DNV Management System Certification	ANSI-RAB	Initial Certification Date: 08 August 1996
Garnett Davis Management Representative DNV Certification, Inc.	Accredited by the RvA	Marc Bivona
Lack of fulfillment of condition	ans as set out in the Appendix m	ay render this certificate invalid.

DET NORSKE VERITAS CERTIFICATION, INC., 16340 Fark Ten Place, Suite 100, Houston, TX 77084 USA TEL: (713) 579-5903 FAX: (713) 643-2842

IMP offers higher performance, lower-power microprocessor supervisors that are pin compatible with devices from Dallas Semiconductor and Maxim Integrated Products. For the latest information visit **www.impweb.com** or send specific requests to **info@impinc.com**.

Part Number	Threshold Voltage (V)	Backup Battery Switch	Watchdog Timer	Power Fail Monitor	Manual Reset	RESET Polarity
IMP690A	4.65	Х	Х	Х		LOW
IMP692A	4.40	X	Х	X		LOW
IMP705	4.65		Х	X	Х	LOW
IMP706	4.40		Х	Х	Х	LOW
IMP707	4.65			X	Х	L&H
IMP708	4.40			Х	Х	L&H
IMP802L	4.65	Х	Х	X		LOW
IMP802M	4.40	Х	Х	Х		LOW
IMP805L	4.65	Х	Х	Х		HIGH
IMP809	2.63 to 4.63					LOW
IMP810	2.63 to 4.63					HIGH
IMP811	2.63 to 4.63				Х	LOW
IMP812	2.63 to 4.63				Х	HIGH
IMP813L	4.65		Х	Х	Х	HIGH

μP Supervisor Products: Low Power Alternatives to Maxim

ELD/B_t06

Block Diagrams

IMP690A, IMP692A, IMP802L, IMP802M and IMP805L

IMP705, IMP706 and IMP813L Watchdog Timer Transition WDI WDO 1 Timebase 0.25mA ₿ı MR « RESET RESET Generator (RESET) (IMP813L) V_{CC} • 4.65V (IMP705/813L) 4.40V (IMP706) Ţ PFI • • PFO 1.25V

IMP707 and IMP708

ا GND

705_01x.eps

μP Supervisor Products: Low Power Alternatives to Dallas Semiconductor

IMP Ordering Part Number	RESET Voltage (V)	RESET Tolerance (%)	RESET Time (ms)	RESET Polarity	Push-Pull Output Stage	Open Drain Output	8-Pin SO Package	TO-92 Package	SOT-23 Package	SOT-223 Package
IMP1810-5	4.620	5	150	LOW	Х			Х		
IMP1810-10	4.370	10	150	LOW	Х			Х		
IMP1810-15	4.120	15	150	LOW	Х			Х		
IMP1810R-5	4.620	5	150	LOW	Х				Х	
IMP1810R-10	4.370	10	150	LOW	Х				Х	
IMP1810R-15	4.120	15	150	LOW	Х				Х	
IMP1811-5	4.620	5	150	LOW		Х		х		
IMP1811-10	4.350	10	150	LOW		Х		х		
IMP1811-15	4.130	15	150	LOW		Х		Х		
IMP1811R-5	4.620	5	150	LOW		Х			Х	
IMP1811R-10	4.350	10	150	LOW		Х			Х	
IMP1811R-15	4.130	15	150	LOW		Х			Х	
IMP1812-5	4.620	5	150	HIGH	Х			Х		
IMP1812-10	4.350	10	150	HIGH	Х			х		
IMP1812-15	4.130	15	150	HIGH	Х			х		
IMP1812R-5	4.620	5	150	HIGH	Х				Х	
IMP1812R-10	4.350	10	150	HIGH	Х				Х	
IMP1812R-15	4.130	15	150	HIGH	Х				Х	
IMP1815-5	3.060	5	150	LOW	X			Х		
IMP1815-10	2.880	10	150	LOW	Х			Х		
IMP1815-20	2.550	20	150	LOW	X			Х		
IMP1815R-5	3.060	5	150	LOW	Х				X	
IMP1815R-10	2.880	10	150	LOW	X				Х	
IMP1815R-20	2.550	20	150	LOW	Х				Х	
IMP1816-5	3.060	5	150	LOW		Х		Х		
IMP1816-10	2.880	10	150	LOW		Х		Х		
IMP1816-20	2.550	20	150	LOW		Х		Х		
IMP1816R-5	3.060	5	150	LOW		Х			Х	
IMP1816R-10	2.880	10	150	LOW		Х			Х	
IMP1816R-20	2.550	20	150	LOW		Х			Х	
IMP1817-5	3.060	5	150	HIGH	Х			х		
IMP1817-10	2.880	10	150	HIGH	X			х		
IMP1817-20	2.550	20	150	HIGH	Х			х		
IMP1817R-5	3.060	5	150	HIGH	X				X	
IMP1817R-10	2.880	10	150	HIGH	X				X	
IMP1817R-20	2.550	20	150	HIGH	X				X	
IMP1233D-5	4.625	5	350	LOW		х		x		
IMP1233D-10	4.375	10	350	LOW		X		x		
IMP1233D-15	4.125	15	350	LOW		X		X		
IMP1233DZ-5	4.625	5	350	LOW		X				X
IMP1233DZ-10	4.375	10	350	LOW		X				X
IMP1233DZ-10	4.375	10	350	LOW		X				X
IMP1233D2-15	4.625	5	350	LOW		X		х		
IMP1233M-55	4.625	10	350	LOW		X		X		
IMP1233M-5 IMP1233M-3	4.375 2.720	10	350	LOW		X		X		
IMP1233M-3 IMP1233MS-55	4.625	15 5	350	LOW		X	Х	^		
IMP1233MS-5	4.375	10	350	LOW		X	X			
IMP1233MS-3	2.720	15	350	LOW		Х	Х			ELD/B t07a.er

USB Power Switches

IMP offers a full complement of Universal Serial Bus (USB) power switches that are higher-performance equivalents to devices from Micrel.

Part Number	# of Switches	"ON" Resistance (mΩ)	Enable Polarity
IMP2525-1	1	140	HIGH
IMP2525-2	1	140	LOW
IMP2525A-1 Low ON Resistance	1	70	HIGH
IMP2525A-2 Low ON Resistance	1	70	LOW
IMP2526-1	2	140	HIGH
IMP2526-2	2	140	LOW
IMP2527-1	4	200	HIGH
IMP2527-2	4	200	LOW

EL Lamp Applications

Sample Requests and New Product Updates

Name:				
Position:				
Company:				
Address:				
City:			State/Prov	vince:
Zip Code:			Country:	
Phone #:			Fax #:	
Email Address:				
IMP Part Qty	IMP Part Qt	у		Please send me updates via:
IMP525EMA	IMP560EMA		Γ	Postal Mail
IMP525ESA	IMP560ESA			EmailPostal Mail and Email
IMP528EMA	IMP803LG			Mail or
IMP528ESA	IMP803IMA			Fax to
www.impv	veb.com			408.434.0335
ISO 9001 Registered Phone: 408.				BRC02.eps-04/20/99

ISO 9001 Registered

Fold

aqsT

FIRST-CLASS MAIL PERMIT NO. 1933 SAN JOSE CA

POSTAGE WILL BE PAID BY THE ADDRESSEE

MS-200 CUSTOMER SERVICE IMP INC 2830 N 1ST ST SAN JOSE CA 95134-9887

ISO 9001 Registered

Ուհահետվիսիսիսիկուներինություն

NO POSTAGE NECESSARY IF MAILED

IN THE UNITED STATES

IMP, Inc. Corporate Headquarters 2830 N. First Street San Jose, CA 95134-2071 Tel: 408-432-9100 Tel: 800-438-3722 Fax: 408-434-0335 e-mail: info@impinc.com http://www.impweb.com

© 1999 IMP, Inc. Printed in USA Part No.: ELDB Document Number: ELDB-06-06/99